首页> 外文期刊>IEEE transactions on very large scale integration (VLSI) systems >Low-Power System for Detection of Symptomatic Patterns in Audio Biological Signals
【24h】

Low-Power System for Detection of Symptomatic Patterns in Audio Biological Signals

机译:低功率系统,用于检测音频生物信号中的症状模式

获取原文
获取原文并翻译 | 示例

摘要

In this paper, we present a low-power, efficacious, and scalable system for the detection of symptomatic patterns in biological audio signals. The digital audio recordings of various symptoms, such as cough, sneeze, and so on, are spectrally analyzed using a discrete wavelet transform. Subsequently, we use simple mathematical metrics, such as energy, quasi-average, and coastline parameter for various wavelet coefficients of interest depending on the type of pattern to be detected. Furthermore, a mel-frequency cepstrum-based analysis is applied to distinguish between signals, such as cough and sneeze, which have a similar frequency response and, hence, occur in common wavelet coefficients. Algorithm-circuit codesign methodology is utilized in order to optimize the system at algorithm and circuit levels of design abstraction. This helps in implementing a low-power system as well as maintaining the efficacy of detection. The system is scalable in terms of user specificity as well as the type of signal to be analyzed for an audio symptomatic pattern. We utilize multiplierless implementation circuit strategies and the algorithmic modification of mel cepstrum computation to implement lowpower system in the 65-nm bulk Si technology. It is observed that the pattern detection system achieves about 90% correct classification of five types of audio health symptoms. We also scale the supply voltage due to lower frequency of operation and report a total power consumption of ~184 μW at 700 mV supply.
机译:在本文中,我们提出了一种低功率,有效且可扩展的系统,用于检测生物音频信号中的症状模式。使用离散小波变换对各种症状(例如咳嗽,打喷嚏等)的数字音频记录进行频谱分析。随后,我们根据要检测的模式类型,对各种感兴趣的小波系数使用简单的数学度量,例如能量,准平均和海岸线参数。此外,基于梅尔频率倒频谱的分析可用于区分信号,例如咳嗽和打喷嚏,这些信号具有相似的频率响应,因此会出现在常见的小波系数中。利用算法电路代码签名方法,以在设计抽象的算法和电路级别上优化系统。这有助于实现低功耗系统并保持检测效率。该系统可以根据用户的特定性以及要针对音频症状模式分析的信号类型进行缩放。我们利用无乘法器实现电路策略和mel倒谱计算的算法修改,以65nm体硅技术实现低功耗系统。观察到,模式检测系统对五种音频健康症状实现了约90%的正确分类。由于工作频率较低,我们还可以调整电源电压,并报告在700 mV电源下的总功耗约为184μW。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号