首页> 外文期刊>IEEE transactions on very large scale integration (VLSI) systems >Streaming Elements for FPGA Signal and Image Processing Accelerators
【24h】

Streaming Elements for FPGA Signal and Image Processing Accelerators

机译:FPGA信号和图像处理加速器的流元素

获取原文
获取原文并翻译 | 示例

摘要

Field-programmable gate array (FPGA) devices boast abundant resources with which custom accelerator components for signal, image, and data processing may be realized; however, realizing high-performance, low-cost accelerators currently demands manual register transfer level design. Software-programmable soft processors have been proposed as a way to reduce this design burden, but they are unable to support performance and cost comparable to custom circuits. This paper proposes a new soft processing approach for FPGA that promises to overcome this barrier. A high-performance, fine-grained streaming processor, known as a streaming accelerator element, is proposed, which realizes accelerators as large-scale custom multicore networks. By adopting a streaming execution approach with advanced program control and memory addressing capabilities, typical program inefficiencies can be almost completely eliminated to enable performance and cost, which are unprecedented among software-programmable solutions. When used to realize accelerators for fast Fourier transform, motion estimation, matrix multiplication, and sobel edge detection, it is shown how the proposed architecture enables real-time performance and with performance and cost comparable with hand-crafted custom circuit accelerators and up to two orders of magnitude beyond existing soft processors.
机译:现场可编程门阵列(FPGA)设备拥有丰富的资源,利用这些资源可以实现用于信号,图像和数据处理的定制加速器组件。但是,要实现高性能,低成本的加速器,目前需要手动寄存器传输级别设计。已经提出了软件可编程软处理器作为减轻这种设计负担的方法,但是它们不能支持与定制电路相当的性能和成本。本文为FPGA提出了一种新的软处理方法,有望克服这一障碍。提出了一种高性能,细粒度的流处理器,称为流加速器元素,该处理器将加速器实现为大规模定制多核网络。通过采用具有高级程序控制和存储器寻址功能的流执行方法,几乎​​可以完全消除典型的程序效率低下,从而实现性能和成本,这在软件可编程解决方案中是前所未有的。当用于实现用于快速傅立叶变换,运动估计,矩阵乘法和sobel边缘检测的加速器时,将显示出所提出的体系结构如何实现实时性能,并具有与手工定制的电路加速器可媲美的性能和成本(最多两个)比现有的软处理器高几个数量级。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号