首页> 外文期刊>IEEE transactions on very large scale integration (VLSI) systems >Decentralized Thermal-Aware Task Scheduling for Large-Scale Many-Core Systems
【24h】

Decentralized Thermal-Aware Task Scheduling for Large-Scale Many-Core Systems

机译:大规模多核系统的分散式热感知任务调度

获取原文
获取原文并翻译 | 示例

摘要

Technology scaling has enabled fast increase in the number of cores integrated in many-core systems. However, feature size shrinking also makes large-scale many-core systems vulnerable to thermal failures. Thermal-aware task scheduling is an efficient technique to reduce the run-time temperatures of many-core processors. Most existing thermal-aware task scheduling algorithms leverage centralized scheduling schemes to gather the overall information and generate the task schedule at a center scheduler. Although that scheme can achieve the optimal temperature reduction, however, it faces severe computation bottleneck and communication congestion when the many-core processors evolve to large-scale with hundreds or thousands of cores. In this paper, we propose a decentralized thermal-aware scheduling algorithm to address this problem in large-scale systems. Experiment results on various benchmarks show that our decentralized algorithm achieves significant improvement on scalability (up to 84.3% reduction in monitoring traffic) and similar benefits on temperature reduction (by 5%) when compared with the state-of-the-art thermal-aware scheduling algorithm.
机译:技术的扩展使许多核系统中集成的核数迅速增加。但是,功能尺寸的缩小也使大规模的多核系统容易出现热故障。热感知任务调度是一种有效的技术,可以降低多核处理器的运行时温度。大多数现有的热感知任务计划算法都利用集中式计划方案来收集总体信息,并在中心计划程序中生成任务计划。尽管该方案可以实现最佳的降温效果,但是,当多核处理器发展为具有数百或数千个核的大规模处理器时,它将面临严重的计算瓶颈和通信拥塞。在本文中,我们提出了一种分散式热感知调度算法来解决大规模系统中的这一问题。在各种基准上的实验结果表明,与最新的热感知技术相比,我们的分散算法在可伸缩性方面实现了显着改善(监控流量减少了多达84.3%),并且在温度降低方面实现了类似的好处(降低了5%)。调度算法。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号