首页> 外文期刊>IEEE transactions on very large scale integration (VLSI) systems >Accuracy Improvement of Energy Prediction for Solar-Energy-Powered Embedded Systems
【24h】

Accuracy Improvement of Energy Prediction for Solar-Energy-Powered Embedded Systems

机译:太阳能嵌入式系统的能量预测精度提高

获取原文
获取原文并翻译 | 示例

摘要

Solar energy prediction is a key to the power management in the electronic embedded system that operates using the harvested solar energy. This paper proposes accuracy improvement approaches for the solar energy prediction based on artificial neural networks, in order to increase the robustness of solar-energy-powered systems. Two complementary neural network models, multilayer perceptron (MLP) network and knowledge-based neural network (KBNN), are exploited to predict the future solar energy, through offline and online training. MLP is constructed under the guidance of the proposed input parameter selection approach and is used when the training data are sufficient. KBNN is employed to take advantage of the existing prediction models and is especially valuable when the training data are insufficient. Built on top of the existing prediction approaches, our work results in a synergy that can overcome the accuracy limitation of the existing prediction approaches. The experimental results show the prediction accuracy improvements by up to 65.4%, compared with the existing approaches. The results also demonstrate the capability of KBNN in providing a reliable model, especially when fewer training data are available.
机译:太阳能预测是使用收集的太阳能运行的电子嵌入式系统中电源管理的关键。为了提高太阳能发电系统的鲁棒性,本文提出了一种基于人工神经网络的太阳能预测精度提高方法。通过离线和在线培训,利用两个互补的神经网络模型,多层感知器(MLP)网络和基于知识的神经网络(KBNN)来预测未来的太阳能。 MLP是在建议的输入参数选择方法的指导下构建的,并且在训练数据足够时使用。 KBNN用于利用现有的预测模型,并且在训练数据不足时特别有价值。在现有预测方法的基础上,我们的工作产生了可以克服现有预测方法准确性限制的协同作用。实验结果表明,与现有方法相比,预测精度提高了65.4%。结果还证明了KBNN提供可靠模型的能力,尤其是在缺少可用训练数据时。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号