首页> 外文期刊>IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems >Trading-Off Accuracy and Energy of Deep Inference on Embedded Systems: A Co-Design Approach
【24h】

Trading-Off Accuracy and Energy of Deep Inference on Embedded Systems: A Co-Design Approach

机译:权衡精度和嵌入式系统深度推理的能量:一种协同设计方法

获取原文
获取原文并翻译 | 示例

摘要

Deep neural networks have seen tremendous success for different modalities of data including images, videos, and speech. This success has led to their deployment in mobile and embedded systems for real-time applications. However, making repeated inferences using deep networks on embedded systems poses significant challenges due to constrained resources (e.g., energy and computing power). To address these challenges, we develop a principled co-design approach. Building on prior work, we develop a formalism referred as coarse-to-fine networks (C2F Nets) that allow us to employ classifiers of varying complexity to make predictions. We propose a principled optimization algorithm to automatically configure C2F Nets for a specified tradeoff between accuracy and energy consumption for inference. The key idea is to select a classifier on-the-fly whose complexity is proportional to the hardness of the input example: simple classifiers for easy inputs and complex classifiers for hard inputs. We perform comprehensive experimental evaluation using four different C2F Net architectures on multiple real-world image classification tasks. Our results show that optimized C2F Net can reduce the energy delay product by 27% to 60% with no loss in accuracy when compared to the baseline solution, where all predictions are made using the most complex classifier in C2F Net.
机译:深度神经网络已经针对包括图像,视频和语音在内的各种数据形式取得了巨大的成功。这一成功促使他们将其部署在用于实时应用程序的移动和嵌入式系统中。然而,由于资源(例如,能量和计算能力)的约束,在嵌入式系统上使用深层网络进行重复推理带来了巨大的挑战。为了应对这些挑战,我们开发了一种原则上的协同设计方法。在先前工作的基础上,我们开发了一种称为“粗到精网络”(C2F Nets)的形式主义,使我们能够使用复杂程度各异的分类器进行预测。我们提出了一种有原则的优化算法,可以自动配置C2F网络,以在推理的准确性和能耗之间进行权衡。关键思想是动态选择一个分类器,该分类器的复杂度与输入示例的硬度成正比:用于简单输入的简单分类器和用于硬输入的复杂分类器。我们使用四种不同的C2F Net架构对多个现实世界中的图像分类任务进行全面的实验评估。我们的结果表明,与基准解决方案相比,优化的C2F Net可以将能量延迟乘积降低27%至60%,而准确性没有损失,基线解决方案使用C2F Net中最复杂的分类器进行所有预测。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号