首页> 外文期刊>IEEE transactions on very large scale integration (VLSI) systems >A 520k (18900, 17010) Array Dispersion LDPC Decoder Architectures for NAND Flash Memory
【24h】

A 520k (18900, 17010) Array Dispersion LDPC Decoder Architectures for NAND Flash Memory

机译:用于NAND闪存的520k(18900、17010)阵列色散LDPC解码器架构

获取原文
获取原文并翻译 | 示例

摘要

Although Latin square is a well-known algorithm to construct low-density parity-check (LDPC) codes for satisfying long code length, high code-rate, good correcting capability, and low error floor, it has a drawback of large submatrix that the hardware implementation will be suffered from large barrel shifter and worse routing congestion in fitting NAND flash applications. In this paper, a top-down design methodology, which not only goes through code construction and optimization, but also hardware implementation to meet all the critical requirements, is presented. A two-step array dispersion algorithm is proposed to construct long LDPC codes with a small submatrix size. Then, the constructed LDPC code is optimized by masking matrix to obtain better bit-error rate (BER) performance and lower error-floor. In addition, our LDPC codes have a diagonal-like structure in the parity-check matrix leading to a proposed hybrid storage architecture, which has the advantages of better area efficiency and large enough data bandwidth for high decoding throughput. To be adopted for NAND flash applications, an (18900, 17010) LDPC code with a code-rate of 0.9 and submatrix size of 63 is constructed and the field-programmable gate array simulations show that the error floor is successfully suppressed down to BER of . An LDPC decoder using normalized min-sum variable-node-centric sequential scheduling decoding algorithm is implemented in UMC 90-nm CMOS process. The postlayout result shows that the proposed LDPC decoder can achieve a throughput of 1.58 Gb/s at six iterations with a gate count of 520k under a clock frequency of 166.6 MHz. It meets the throughput requirement of both NAND flash memories with Toggle double data rate 1.0 and open NAND flash interface 2.3 NAND interfaces.
机译:尽管Latin square是构造低密度奇偶校验(LDPC)码以满足长码长,高码率,良好的纠错能力和低误码率的公知算法,但它具有子矩阵大的缺点,即大型桶式移位器和适合NAND闪存应用程序的布线拥塞情况将加剧硬件实现。本文提出了一种自上而下的设计方法,该方法不仅要经过代码构造和优化,而且要通过硬件实现来满足所有关键要求。提出了一种两步阵列色散算法,以构造具有较小子矩阵尺寸的长LDPC码。然后,通过掩蔽矩阵对构造的LDPC码进行优化,以获得更好的误码率(BER)性能和更低的误码率。另外,我们的LDPC码在奇偶校验矩阵中具有类似对角线的结构,从而导致了提出的混合存储体系结构,其优点是具有更高的区域效率和足够大的数据带宽以实现高解码吞吐量。为了在NAND闪存应用中采用,构造了一种码率为0.9,子矩阵大小为63的(18900,17010)LDPC码,现场可编程门阵列仿真表明,成功将误码率抑制到了BER的水平。 。在UMC 90-nm CMOS工艺中实现了使用归一化最小和可变节点中心顺序调度解码算法的LDPC解码器。后布局结果表明,在时钟频率为166.6 MHz的情况下,提出的LDPC解码器可以在六次迭代中以520k的门数实现1.58 Gb / s的吞吐量。它同时满足Toggle双倍数据速率1.0和开放式NAND闪存接口2.3 NAND接口的吞吐量要求。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号