首页> 外文期刊>IEEE transactions on very large scale integration (VLSI) systems >GPU-Accelerated Parallel Sparse LU Factorization Method for Fast Circuit Analysis
【24h】

GPU-Accelerated Parallel Sparse LU Factorization Method for Fast Circuit Analysis

机译:GPU加速的并行稀疏LU分解方法,用于快速电路分析

获取原文
获取原文并翻译 | 示例

摘要

Lower upper (LU) factorization for sparse matrices is the most important computing step for circuit simulation problems. However, parallelizing LU factorization on the graphic processing units (GPUs) turns out to be a difficult problem due to intrinsic data dependence and irregular memory access, which diminish GPU computing power. In this paper, we propose a new sparse LU solver on GPUs for circuit simulation and more general scientific computing. The new method, which is called GPU accelerated LU factorization (GLU) solver (for GPU LU), is based on a hybrid right-looking LU factorization algorithm for sparse matrices. We show that more concurrency can be exploited in the right-looking method than the left-looking method, which is more popular for circuit analysis, on GPU platforms. At the same time, the GLU also preserves the benefit of column-based left-looking LU method, such as symbolic analysis and column-level concurrency. We show that the resulting new parallel GPU LU solver allows the parallelization of all three loops in the LU factorization on GPUs. While in contrast, the existing GPU-based left-looking LU factorization approach can only allow parallelization of two loops. Experimental results show that the proposed GLU solver can deliver and speedup over the single-threaded and the 16-threaded PARDISO solvers, respectively, speedup over the KLU solver, over the UMFPACK solver, and speedup over a recently proposed GPU-based left-looking LU solver on the set of typical circuit matrices from the University of Florida (UFL) spar- e matrix collection. Furthermore, we also compare the proposed GLU solver on a set of general matrices from the UFL, GLU achieves and speedup over the single-threaded and the 16-threaded PARDISO solvers, respectively, speedup over the KLU solver, over the UMFPACK solver, and speedup over the same GPU-based left-looking LU solver. In addition, comparison on self-generated mesh networks shows a similar trend, which further validates the advantage of the proposed method over the existing sparse LU solvers.
机译:稀疏矩阵的较低上限(LU)分解是电路仿真问题最重要的计算步骤。但是,由于固有的数据依赖性和不规则的内存访问,在图形处理单元(GPU)上并行化LU分解被证明是一个难题,这降低了GPU的计算能力。在本文中,我们提出了一种新的基于GPU的稀疏LU解算器,用于电路仿真和更通用的科学计算。这种新方法称为GPU加速LU分解(GLU)解算器(适用于GPU LU),它基于一种用于稀疏矩阵的混合右看LU分解算法。我们显示,在GPU平台上,从右看的方法比在电路分析中更受欢迎的左看的方法可以利用更多的并发性。同时,GLU还保留了基于列的左眼LU方法的优势,例如符号分析和列级并发。我们证明了新的并行GPU LU求解器可以在GPU的LU分解中实现所有三个循环的并行化。相反,现有的基于GPU的左眼LU分解方法只能允许两个循环并行化。实验结果表明,所提出的GLU求解器可以分别在单线程和16线程的PARDISO求解器上传递和加速,在KLU求解器,UMFPACK求解器上进行加速,并在最近基于GPU的左眼视图上进行加速。佛罗里达大学(UFL)稀疏矩阵集合中一组典型电路矩阵的LU求解器。此外,我们还从UFL的一组通用矩阵上比较了拟议的GLU求解器,GLU分别在单线程和16线程的PARDISO求解器上实现并加快了速度,在KLU求解器,UMFPACK求解器上实现了加速,并且加快了基于相同GPU的左眼LU求解器的速度。另外,在自生网格网络上的比较显示出相似的趋势,这进一步证明了该方法相对于现有的稀疏LU解算器的优势。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号