首页> 外文期刊>IEEE transactions on very large scale integration (VLSI) systems >Accuracy-Aware Power Management for Many-Core Systems Running Error-Resilient Applications
【24h】

Accuracy-Aware Power Management for Many-Core Systems Running Error-Resilient Applications

机译:运行防错应用程序的多核系统的精度感知电源管理

获取原文
获取原文并翻译 | 示例

摘要

Power capping techniques based on dynamic voltage and frequency scaling (DVFS) and power gating (PG) are oriented toward power actuation, compromising on performance and energy. Inherent error resilience of emerging application domains, such as Internet-of-Things (IoT) and machine learning, provides opportunities for energy and performance gains. Leveraging accuracy-performance tradeoffs in such applications, we propose approximation (APPX) as another knob for closelooped power management, to complement power knobs with performance and energy gains. We design a power management framework, APPEND+, that can switch between accurate and approximate modes of execution subject to system throughput requirements. APPEND+ considers the sensitivity of the application to error to make disciplined alteration between levels of APPX such that performance is maximized while error is minimized. We implement a power management scheme that uses APPX, DVFS, and PG knobs hierarchically. We evaluated our proposed approach over machine learning and signal processing applications along with two case studies on IoT-early warning score system and fall detection. APPEND+ yields 1.9× higher throughput, improved latency up to five times, better performance per energy, and dark silicon mitigation compared with the state-of-the-art power management techniques over a set of applications ranging from high to no error resilience.
机译:基于动态电压和频率缩放(DVFS)和功率门控(PG)的功率上限技术面向功率致动,从而损害了性能和能量。物联网(IoT)和机器学习等新兴应用程序域的固有错误恢复能力为提高能量和性能提供了机会。利用此类应用中精度与性能之间的权衡,我们建议采用近似(APPX)作为闭环电源管理的另一个旋钮,以在性能和能量增益方面对功率旋钮进行补充。我们设计了一个电源管理框架APPEND +,可以根据系统吞吐量要求在准确的执行模式和近似的执行模式之间进行切换。 APPEND +考虑了应用程序对错误的敏感性,以便在APPX的各个级别之间进行有条理的更改,从而使性能最大化,而错误最小化。我们实现了分层使用APPX,DVFS和PG旋钮的电源管理方案。我们评估了在机器学习和信号处理应用程序方面的拟议方法,以及有关物联网早期预警评分系统和跌倒检测的两个案例研究。与最新的电源管理技术相比,APPEND +在一系列应用程序中具有最高的吞吐量,可将延迟提高五倍,单位能量的性能更好,并且可以减轻暗硅的影响。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号