首页> 外文期刊>IEEE transactions on very large scale integration (VLSI) systems >Maintaining Scalability of Test Generation Using Multicore Shared Memory Systems
【24h】

Maintaining Scalability of Test Generation Using Multicore Shared Memory Systems

机译:使用多核共享内存系统维护测试生成的可伸缩性

获取原文
获取原文并翻译 | 示例

摘要

Taking advantage of multicore architectures can provide significant improvement for many design automation problems. However, the parallelization procedure introduces challenges, such as workload duplication, limited search space exploration, and race contention among different threads. In this article, we propose a parallel framework for automatic test pattern generation using shared memory multicore systems that support test generation (TG) for both single-detect and multiple-detect fault models. The framework follows a two-epoch approach, each focusing on a different category of faults, during which a test seed generation is followed by compatibility merging. Various optimization techniques are incorporated in each epoch, designed to achieve higher speedup for the overall TG procedure without impacting much the test set size. A cluster-based approach is also presented, extending the proposed framework to consider multiple-detect fault models without affecting its efficiency. The obtained experimental results demonstrate increased speedup rates compared with the state-of-the-art multicore-based tools while, at the same time, the test inflation problem is restrained. For the multiple-detect extension, these properties are maintained despite the increased workload and the additional constraint of retaining the number of detections for each fault while merging.
机译:利用多核体系结构可以大大改善许多设计自动化问题。但是,并行化过程带来了挑战,例如工作负载重复,有限的搜索空间探索以及不同线程之间的竞争。在本文中,我们提出了一个使用共享内存多核系统自动生成测试模式的并行框架,该系统支持针对单检测和多检测故障模型的测试生成(TG)。该框架遵循两个时期的方法,每个方法专注于不同类别的故障,在此期间,测试种子的生成与兼容性合并。每个时代都采用了各种优化技术,旨在在不影响测试装置尺寸的前提下,加快整个TG程序的速度。还提出了一种基于集群的方法,将提出的框架扩展为考虑多次检测故障模型而不影响其效率。获得的实验结果表明,与最新的基于多核的工具相比,加速率得到了提高,同时,测试膨胀问题得到了抑制。对于多重检测扩展,尽管增加了工作量,而且在合并时仍保留每个故障的检测次数,但仍保留了这些属性。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号