首页> 外文期刊>IEEE transactions on very large scale integration (VLSI) systems >Low-Complexity Distributed-Arithmetic-Based Pipelined Architecture for an LSTM Network
【24h】

Low-Complexity Distributed-Arithmetic-Based Pipelined Architecture for an LSTM Network

机译:LSTM网络的低复杂度基于分布式算法的流水线架构

获取原文
获取原文并翻译 | 示例

摘要

Long short-term memory (LSTM) networks have addressed the shortcomings of recurrent neural networks, such as vanishing gradients and the lack of ability in developing connections across discontinuous parts of sequences. However, the implementations of state-of-the-art LSTM networks face the computational bottleneck of having multiple high-order matrix-vector multiplications (MVMs). This article presents a generalized approach to accelerate a circulant MVM (C-MVM), and hence, it is applicable to many neural networks. The proposed scheme presents a novel low-complexity distributed arithmetic (DA) architecture for optimizing C-MVMs. Unlike conventional offset binary coding-based DA (OBC-DA), it is based on separate generation and selection of partial products. Only one partial product generator (PPG) with several partial product selectors (PPSs) is required. The complexity of PPSs is reduced by sharing the minterms across Boolean expressions. Fine-grained pipelining is employed to achieve approximately one adder delay. From the implementation results, the proposed design with 512 x times 512 LSTM layer occupies 74.54%; less core area, consumes 68.66%; less core power, offers 2.61 times more throughput, and 3.89 times more hardware efficiency over the best existing design.
机译:长短期记忆(LSTM)网络解决了循环神经网络的缺点,例如梯度消失以及缺乏在序列不连续部分之间建立连接的能力。但是,最新的LSTM网络的实现面临着具有多个高阶矩阵矢量乘法(MVM)的计算瓶颈。本文提出了一种通用的方法来加速循环MVM(C-MVM),因此,它适用于许多神经网络。提出的方案提出了一种用于优化C-MVM的新颖的低复杂度分布式算法(DA)架构。与常规的基于偏移二进制编码的DA(OBC-DA)不同,它基于部分乘积的单独生成和选择。只需一个带有多个部分产品选择器(PPS)的部分产品生成器(PPG)。通过在布尔表达式之间共享最小项可以降低PPS的复杂性。采用细粒度流水线可达到大约一个加法器延迟。从实施结果来看,所提出的512 x 512 LSTM层的设计占74.54%。核心面积少,消耗68.66%;与最佳现有设计相比,核心功耗更低,吞吐量提高了2.61倍,硬件效率提高了3.89倍。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号