首页> 外文期刊>IEEE transactions on very large scale integration (VLSI) systems >Power Management for Multicore Processors via Heterogeneous Voltage Regulation and Machine Learning Enabled Adaptation
【24h】

Power Management for Multicore Processors via Heterogeneous Voltage Regulation and Machine Learning Enabled Adaptation

机译:通过异构电压调节和支持机器学习的多核处理器的电源管理

获取原文
获取原文并翻译 | 示例

摘要

This work is based on the vision that the ultimate power integrity and efficiency may be best achieved via a heterogeneous chain of voltage processing starting from onboard switching voltage regulators (VRs), to on-chip switching VRs, and finally to networks of distributed on-chip linear VRs. As such, we propose a heterogeneous voltage regulation (HVR) architecture encompassing regulators with complimentary characteristics in response time, size, and efficiency. By exploring the rich heterogeneity and tunability in HVR, we develop systematic workload-aware power management policies to adapt heterogeneous VRs with respect to workload change at multiple temporal scales to significantly improve system power efficiency while providing a guarantee for power integrity. The proposed techniques are further supported by hardware-accelerated machine learning (ML) prediction of nonuniform spatial workload distributions for more accurate HVR adaptation at fine time granularity. Our evaluations based on the PARSEC benchmark suite show that the proposed adaptive three-stage HVR reduces the total system energy dissipation by up to 23.9 & x0025; and 15.7 & x0025; on average compared with the conventional static two-stage voltage regulation using off-chip and on-chip switching VRs. Compared with the three-stage static HVR, our runtime control reduces system energy by up to 17.9 & x0025; and 12.2 & x0025; on average. Furthermore, the proposed ML prediction offers up to 4.1 & x0025; reduction of system energy.
机译:这项工作基于以下愿景:通过从机载开关稳压器(VR)到片上开关VR以及最终到分布式内置网络的异类电压处理链,可以最佳地实现最终的电源完整性和效率。芯片线性VR。因此,我们提出了一种异构电压调节(HVR)架构,其中包括在响应时间,尺寸和效率方面具有互补特性的调节器。通过探索HVR中丰富的异构性和可调性,我们开发了系统化的可感知工作负载的电源管理策略,以适应异构VR在多个时间尺度上适应工作负载变化的情况,从而显着提高系统电源效率,同时为电源完整性提供了保证。硬件加速的机器学习(ML)对非均匀空间工作负载分布的预测进一步支持了所提出的技术,以便在精细的时间粒度上实现更准确的HVR适应。我们基于PARSEC基准套件的评估表明,所提出的自适应三级HVR可将系统总能耗降低多达23.9&x0025;和15.7&x0025;平均而言,与使用片外和片内开关VR的常规静态两级稳压相比。与三阶段静态HVR相比,我们的运行时控制可将系统能耗降低多达17.9&x0025;和12.2&x0025;一般。此外,建议的ML预测可提供高达4.1&x0025;减少系统能耗。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号