首页> 外文期刊>IEEE transactions on very large scale integration (VLSI) systems >Dynamic Resource Management of Heterogeneous Mobile Platforms via Imitation Learning
【24h】

Dynamic Resource Management of Heterogeneous Mobile Platforms via Imitation Learning

机译:通过模仿学习对异构移动平台进行动态资源管理

获取原文
获取原文并翻译 | 示例

摘要

The complexity of heterogeneous mobile platforms is growing at a rate faster than our ability to manage them optimally at runtime. For example, state-of-the-art systems-on-chip (SoCs) enable controlling the type (Big/Little), number, and frequency of active cores. Managing these platforms becomes challenging with the increase in the type, number, and supported frequency levels of the cores. However, existing solutions used in mobile platforms still rely on simple heuristics based on the utilization of cores. This paper presents a novel and practical imitation learning (IL) framework for dynamically controlling the type (Big/Little), number, and the frequencies of active cores in heterogeneous mobile processors. We present efficient approaches for constructing an Oracle policy to optimize different objective functions, such as energy and performance per Watt (PPW). The Oracle policies enable us to design low-overhead power management policies that achieve near-optimal performance matching the Oracle. Experiments on a commercial platform with 19 benchmarks show on an average 101% PPW improvement compared to the default interactive governor.
机译:异构移动平台的复杂性正在以比我们在运行时最佳地管理它们的能力更快的速度增长。例如,最新的片上系统(SoC)可以控制活动核心的类型(大/小),数量和频率。随着内核的类型,数量和受支持的频率级别的增加,管理这些平台变得充满挑战。但是,移动平台中使用的现有解决方案仍然依赖基于内核利用率的简单启发式算法。本文提出了一种新颖且实用的模仿学习(IL)框架,用于动态控制异构移动处理器中活动核心的类型(大/小),数量和频率。我们提出了构建Oracle策略的有效方法,以优化不同的目标功能,例如能源和每瓦特性能(PPW)。 Oracle策略使我们能够设计低开销的电源管理策略,以达到与Oracle匹配的最佳性能。在具有19个基准的商业平台上进行的实验表明,与默认的交互式调控器相比,PPW平均提高了101%。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号