首页> 外文期刊>IEEE transactions on very large scale integration (VLSI) systems >Enhancing Utilization of SIMD-Like Accelerator for Sparse Convolutional Neural Networks
【24h】

Enhancing Utilization of SIMD-Like Accelerator for Sparse Convolutional Neural Networks

机译:类似于SIMD的加速器在稀疏卷积神经网络中的利用

获取原文
获取原文并翻译 | 示例

摘要

Although the existing single-instruction-multiple-data-like (SIMD) accelerators can handle the compressed format of sparse convolutional neural networks, the sparse and irregular distributions of nonzero elements cause low utilization of multipliers in a processing engine (PE) and imbalanced computation between PEs. This brief addresses the above issues by proposing a data screening and task mapping (DSTM) accelerator which integrates a series of techniques, including software refinement and hardware modules. An efficient indexing module is introduced to identify the effectual computation pairs and skip unnecessary computation in a fine-grained manner. The intra-PE load imbalance is alleviated with weight data rearrangement. An effective task sharing mechanism further balances the computation between PEs. When compared with the state-of-the-art SIMD-like accelerator, the proposed DSTM enhances the average PE utilization by 3.5x. The overall processing throughput is 59.7% higher than the previous design.
机译:尽管现有的单指令多数据类(SIMD)加速器可以处理稀疏卷积神经网络的压缩格式,但非零元素的稀疏和不规则分布会导致处理引擎(PE)中乘法器的利用率低和计算不平衡PE之间。本简介通过提出一种数据筛选和任务映射(DSTM)加速器来解决上述问题,该加速器集成了一系列技术,包括软件优化和硬件模块。引入了高效的索引模块,以识别有效的计算对并以细粒度的方式跳过不必要的计算。通过重量数据重新安排,可以减轻PE内部的负载不平衡。有效的任务共享机制进一步平衡了PE之间的计算。与最先进的类似SIMD的加速器相比,建议的DSTM将平均PE利用率提高了3.5倍。总体处理吞吐量比以前的设计高59.7%。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号