首页> 外文期刊>Vehicle System Dynamics >A design methodology for mechatronic vehicles: application of multidisciplinary optimization, multibody dynamics and genetic algorithms
【24h】

A design methodology for mechatronic vehicles: application of multidisciplinary optimization, multibody dynamics and genetic algorithms

机译:机电车辆的设计方法:多学科优化,多体动力学和遗传算法的应用

获取原文
获取原文并翻译 | 示例
       

摘要

A design methodology for mechatronic vehicles is presented. With multidisciplinary optimization (MDO) methods, strongly coupled mechanical, control and other subsystems are integrated as a synergistic vehicle system. With genetic algorithms (GAs) at the system level, the mechanical, control and other relevant parameters can be optimized simultaneously. To demonstrate the feasibility and efficacy of the proposed design methodology for mechatronic vehicles, it is used to resolve the conflicting requirements for ride comfort, suspension working spaces and unsprung mass dynamic loads in the optimization of half-vehicle models with active suspensions. Both deterministic and random road excitations, both rigid and flexible vehicle bodies and both perfect measurement of full state variables and estimated limited state variables are considered. Numerical results show that the optimized vehicle systems based on the methodology have better overall performance than those using the linear quadratic Gaussian (LQG) controller. It is shown that the methodology is suitable for complex design optimization problems where: (1) there is interaction between different disciplines or subsystems; (2) there are multiple design criteria; (3) there are multiple local optima; (4) there is no need for sensitivity analysis for the optimizer at the system level; and (5) there are multiple design variables.
机译:提出了一种机电汽车的设计方法。通过多学科优化(MDO)方法,强耦合的机械,控制和其他子系统被集成为协同车辆系统。利用系统级的遗传算法(GA),可以同时优化机械,控制和其他相关参数。为了证明所提出的机电汽车设计方法的可行性和有效性,它被用来解决在具有主动悬架的半车辆模型的优化中对乘坐舒适性,悬架工作空间和未悬挂的质量动态载荷的矛盾要求。确定性和随机道路激励,刚性和柔性车身,以及对完整状态变量和估计的有限状态变量的完美测量,都应予以考虑。数值结果表明,与使用线性二次高斯(LQG)控制器的系统相比,基于该方法的优化车辆系统具有更好的整体性能。结果表明,该方法适用于以下情况的复杂设计优化问题:(1)不同学科或子系统之间存在相互作用; (2)有多个设计准则; (3)存在多个局部最优; (4)不需要在系统级别对优化器进行敏感性分析; (5)有多个设计变量。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号