首页> 外文期刊>User modeling and user-adapted interaction >Anatomy and Empirical Evaluation of an Adaptive Web-Based Information Filtering System
【24h】

Anatomy and Empirical Evaluation of an Adaptive Web-Based Information Filtering System

机译:基于Web的自适应信息过滤系统的解剖学和实证评估

获取原文
获取原文并翻译 | 示例

摘要

A case study in adaptive information filtering systems for the Web is presented. The described system comprises two main modules, named HUMOS and WIFS. HUMOS is a user modeling system based on stereotypes. It builds and maintains long term models of individual Internet users, representing their information needs. The user model is structured as a frame containing informative words, enhanced with semantic networks. The proposed machine learning approach for the user modeling process is based on the use of an artificial neural network for stereotype assignments. WIFS is a content-based information filtering module, capable of selecting html/text documents on computer science collected from the Web according to the interests of the user. It has been created for the very purpose of the structure of the user model utilized by HUMOS. Currently, this system acts as an adaptive interface to the Web search engine ALTA VISTA~(TM). An empirical evaluation of the system has been made in experimental settings. The experiments focused on the evaluation, by means of a non-parametric statistics approach, of the added value in terms of system performance given by the user modeling component; it also focused on the evaluation of the usability and user acceptance of the system. The results of the experiments are satisfactory and support the choice of a user model-based approach to information filtering on the Web.
机译:提出了针对Web的自适应信息过滤系统的案例研究。所描述的系统包括两个主要模块,分别名为HUMOS和WIFS。 HUMOS是基于原型的用户建模系统。它建立并维护个人互联网用户的长期模型,代表他们的信息需求。用户模型被构造为包含提示词的框架,并通过语义网络进行了增强。针对用户建模过程提出的机器学习方法基于对原型分配的人工神经网络的使用。 WIFS是基于内容的信息过滤模块,能够根据用户的兴趣从Web上收集有关计算机科学的html /文本文档。创建它是出于HUMOS使用的用户模型结构的目的。当前,该系统充当Web搜索引擎ALTA VISTA〜的自适应接口。在实验环境中对系统进行了经验评估。实验的重点是通过非参数统计方法评估用户建模组件提供的系统性能方面的增值;它还着重于评估系统的可用性和用户接受度。实验的结果令人满意,并支持选择基于用户模型的方法在Web上进行信息过滤。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号