首页> 外文期刊>User modeling and user-adapted interaction >A hybrid approach for improving predictive accuracy of collaborative filtering algorithms
【24h】

A hybrid approach for improving predictive accuracy of collaborative filtering algorithms

机译:一种提高协作过滤算法预测准确性的混合方法

获取原文
获取原文并翻译 | 示例

摘要

Recommender systems represent a class of personalized systems that aim at predicting a user's interest on information items available in the application domain, operating upon user-driven ratings on items and/or item features. One of the most widely used recommendation methods is collaborative filtering that exploits the assumption that users who have agreed in the past in their ratings on observed items will eventually agree in the future. Despite the success of recommendation methods and collaborative filtering in particular, in real-world applications they suffer from the insufficient number of available ratings, which significantly affects the accuracy of prediction. In this paper, we propose recommendation approaches that follow the collaborative filtering reasoning and utilize the notion of lifestyle as an effective user characteristic that can group consumers in terms of their behavior as indicated in consumer behavior and marketing theory. Emanating from a basic lifestyle-based recommendation algorithm we incrementally proceed to the development of hybrid recommendation approaches that address certain dimensions of the sparsity problem and empirically evaluate them providing further evidence of their effectiveness.
机译:推荐器系统代表了一类个性化系统,这些系统旨在根据用户对项目和/或项目特征的评级来预测用户对应用程序域中可用信息项目的兴趣。最广泛使用的推荐方法之一是协作过滤,它利用了以下假设:过去在观察项目的评分上达成一致的用户最终会在将来达成共识。尽管推荐方法尤其是协作过滤方法非常成功,但是在实际应用中,它们仍然受到可用评级数量不足的困扰,这严重影响了预测的准确性。在本文中,我们提出了遵循协作过滤推理的推荐方法,并利用生活方式的概念作为有效的用户特征,可以按照消费者行为和营销理论中的行为将消费者分组。从基于生活方式的基本推荐算法开始,我们逐步进行混合推荐方法的开发,以解决稀疏性问题的某些方面,并根据经验进行评估,以提供其有效性的进一步证据。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号