首页> 外文期刊>User modeling and user-adapted interaction >A recommendation approach for user privacy preferences in the fitness domain
【24h】

A recommendation approach for user privacy preferences in the fitness domain

机译:适用于健身域中的用户隐私偏好的推荐方法

获取原文

摘要

Fitness trackers are undoubtedly gaining in popularity. As fitness-related data are persistently captured, stored, and processed by these devices, the need to ensure users' privacy is becoming increasingly urgent. In this paper, we apply a data-driven approach to the development of privacy-setting recommendations for fitness devices. We first present a fitness data privacy model that we defined to represent users' privacy preferences in a way that is unambiguous, compliant with the European Union's General Data Protection Regulation (GDPR), and able to represent both the user and the third party preferences. Our crowdsourced dataset is collected using current scenarios in the fitness domain and used to identify privacy profiles by applying machine learning techniques. We then examine different personal tracking data and user traits which can potentially drive the recommendation of privacy profiles to the users. Finally, a set of privacy-setting recommendation strategies with different guidance styles are designed based on the resulting profiles. Interestingly, our results show several semantic relationships among users' traits, characteristics, and attitudes that are useful in providing privacy recommendations. Even though several works exist on privacy preference modeling, this paper makes a contribution in modeling privacy preferences for data sharing and processing in the IoT and fitness domain, with specific attention to GDPR compliance. Moreover, the identification of well-identified clusters of preferences and predictors of such clusters is a relevant contribution for user profiling and for the design of interactive recommendation strategies that aim to balance users' control over their privacy permissions and the simplicity of setting these permissions.
机译:健身跟踪器无疑是普及的。随着这些设备的持续捕获,存储和处理的健身相关数据,需要确保用户隐私变得越来越紧迫。在本文中,我们应用数据驱动的方法来开发适用于健身器件的隐私建议。我们首先介绍我们定义的健身数据隐私模型,以表示用户的隐私偏好,以符合欧洲联盟的一般数据保护规范(GDPR),并且能够代表用户和第三方偏好。我们使用健身域中的当前方案收集了我们的众包数据集,并通过应用机器学习技术来识别隐私配置文件。然后,我们检查不同的个人跟踪数据和用户特征,可能会推动隐私概要文件的推荐给用户。最后,根据生成的配置文件设计了一套具有不同引导风格的隐私设置推荐策略。有趣的是,我们的结果显示了有助于提供隐私建议的用户特征,特征和态度之间的几种语义关系。尽管隐私偏好建模有几种作品,但本文在IOT和健身域中的数据共享和处理建模隐私首选项,具有对GDPR合规性的特殊性的贡献。此外,鉴定了这种集群的良好识别的偏好簇和预测因子是用户分析的相关贡献,以及旨在平衡用户对其隐私权限的控制以及设置这些权限的简单性的互动推荐策略的相关贡献。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号