首页> 外文期刊>User Modeling and User-Adapted Interaction >Leveraging machine-learned detectors of systematic inquiry behavior to estimate and predict transfer of inquiry skill
【24h】

Leveraging machine-learned detectors of systematic inquiry behavior to estimate and predict transfer of inquiry skill

机译:利用机器学习的系统性查询行为检测器来估计和预测查询技能的转移

获取原文
获取原文并翻译 | 示例

摘要

We present work toward automatically assessing and estimating science inquiry skills as middle school students engage in inquiry within a physical science microworld. Towards accomplishing this goal, we generated machine-learned models that can detect when students test their articulated hypotheses, design controlled experiments, and engage in planning behaviors using two inquiry support tools. Models were trained using labels generated through a new method of manually hand-coding log files, “text replay tagging”. This approach led to detectors that can automatically and accurately identify these inquiry skills under student-level cross-validation. The resulting detectors can be applied at run-time to drive scaffolding intervention. They can also be leveraged to automatically score all practice attempts, rather than hand-classifying them, and build models of latent skill proficiency. As part of this work, we also compared two approaches for doing so, Bayesian Knowledge-Tracing and an averaging approach that assumes static inquiry skill level. These approaches were compared on their efficacy at predicting skill before a student engages in an inquiry activity, predicting performance on a paper-style multiple choice test of inquiry, and predicting performance on a transfer task requiring data collection skills. Overall, we found that both approaches were effective at estimating student skills within the environment. Additionally, the models’ skill estimates were significant predictors of the two types of inquiry transfer tests.
机译:当中学生在物理科学的微观世界中进行探究时,我们提出了自动评估和估计科学探究技能的工作。为了实现这一目标,我们生成了机器学习模型,可以使用两种查询支持工具检测学生何时测试其明确的假设,进行设计控制的实验以及进行计划行为。使用通过手动手工编码日志文件的新方法(“文本重放标记”)生成的标签来训练模型。这种方法导致检测器可以根据学生水平的交叉验证自动,准确地识别这些查询技能。生成的检测器可以在运行时应用,以驱动脚手架干预。还可以利用它们来自动评分所有练习尝试,而不是对他们进行手动分类,并建立潜在技能熟练程度的模型。作为这项工作的一部分,我们还比较了这样做的两种方法:贝叶斯知识追踪和假设静态查询技能水平的平均方法。在学生进行探究活动之前,比较了这些方法在预测技能上的功效,在纸质选择题测验上预测绩效以及在需要数据收集技能的转移任务上预测绩效的能力。总体而言,我们发现这两种方法都可以有效地估计环境中的学生技能。此外,模型的技能估计是两种查询转移测试的重要预测指标。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号