首页> 外文期刊>User modeling and user-adapted interaction >Identifying factors that influence the acceptability of smart devices: implications for recommendations
【24h】

Identifying factors that influence the acceptability of smart devices: implications for recommendations

机译:确定影响智能设备可接受性的因素:建议的含义

获取原文
获取原文并翻译 | 示例

摘要

This paper presents results from a web-based study that investigates users’ attitudes toward smart devices, focusing on acceptability. Specifically, we conducted a survey that elicits users’ ratings of devices in isolation and devices in the context of tasks potentially performed by these devices. Our study led to insights about users’ attitudes towards devices in isolation and in the context of tasks, and about the influence of demographic factors and factors pertaining to technical expertise and experience with devices on users’ attitudes. The insights about users’ attitudes provided the basis for two recommendation approaches based on principal components analysis (PCA) that alleviate the new-user and new-item problems: (1) employing latent features identified by PCA to predict ratings given by existing users to new devices, and by new users to existing devices; and (2) identifying a relatively small set of key questions on the basis of PCs, whose answers account to a large extent for new users’ ratings of devices in isolation and in the context of tasks. Our results show that taking into account latent features of devices, and asking a relatively small number of key questions about devices in the context of tasks, lead to rating predictions that are significantly more accurate than global and demographic predictions, and substantially reduce prediction error, eventually matching the performance of strong baselines.
机译:本文介绍了基于网络的研究结果,该研究调查了用户对智能设备的态度,重点是可接受性。具体来说,我们进行了一项调查,以得出用户对隔离设备的评级,以及在这些设备可能执行的任务的背景下得出的设备评级。我们的研究得出了关于用户孤立地在任务中使用设备的态度的见解,以及人口统计学因素以及与设备的技术专长和经验有关的因素对用户态度的影响。关于用户态度的见解为基于主成分分析(PCA)的两种推荐方法的基础提供了基础,这些方法可缓解新用户和新项目的问题:(1)利用PCA识别的潜在功能来预测现有用户对新设备,以及新用户使用现有设备的情况; (2)根据PC识别相对较少的关键问题,这些问题的答案在很大程度上取决于新用户对单独设备和任务范围内设备的评价。我们的结果表明,考虑到设备的潜在功能,并在任务范围内询问有关设备的相对较少的关键问题,可以使评级预测比全局预测和人口统计预测准确得多,并且可以大大降低预测误差,最终与强基准的性能相匹配。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号