首页> 外文期刊>Transactions of the ASABE >SPATIAL UNCERTAINTY IN PREDICTION OF THE TOPOGRAPHICAL FACTOR FOR THE REVISED UNIVERSAL SOIL LOSS EQUATION (RUSLE)
【24h】

SPATIAL UNCERTAINTY IN PREDICTION OF THE TOPOGRAPHICAL FACTOR FOR THE REVISED UNIVERSAL SOIL LOSS EQUATION (RUSLE)

机译:修订后的通用土壤流失方程(规则)的地形因子预测中的空间不确定性

获取原文
获取原文并翻译 | 示例

摘要

The Revised Universal Soil Loss Equation (RUSLE) is a model widely used to predict soil loss. An important component of RUSLE is the combined topographical factor (LS), which is the product of the slope length factor (L) and the slope steepness factor (S). It is important to identify the main sources of uncertainty in the LS factor and reduce the uncertainty where practical. Moreover, the uncertainty of the LS factor may vary across space, and this spatial uncertainty may require error management. For this reason, the spatial effects of slope steepness and slope length should be quantified, and their uncertainty propagation should be modeled. This article presents a general methodology for spatial uncertainty assessment of the RUSLE and its application results to the uncertainty analysis of LS as an example. A sequential indicator simulation was used to develop spatial prediction maps of slope steepness and slope length based on collected field data. The uncertainty due to slope steepness, slope length, and model parameters were propagated through topographical factor LS using the Fourier Amplitude Sensitivity Test (FAST). Spatial variance partitioning was performed to generate error budgets, and uncertainty sources were identified. Slope steepness contributed the largest variance in predicting topographical factor LS, followed by slope length. The variance contributions from the model parameters and measurement errors were relatively small. The results provide modelers and decision-makers with spatial uncertainty information for the purpose of error management
机译:修订的通用土壤流失方程(RUSLE)是广泛用于预测土壤流失的模型。 RUSLE的重要组成部分是组合地形因子(LS),它是边坡长度因子(L)和坡度陡度因子(S)的乘积。重要的是要确定LS因子不确定性的主要来源,并在可行的情况下减少不确定性。此外,LS因子的不确定性可能会在整个空间中变化,并且这种空间不确定性可能需要进行错误管理。因此,应该对斜坡陡度和斜坡长度的空间影响进行量化,并对其不确定性传播进行建模。本文以RUSLE的空间不确定性评估为例,介绍了一种通用的方法,并将其应用到LS的不确定性分析中。基于收集的现场数据,使用顺序指示器模拟来开发斜坡陡度和斜坡长度的空间预测图。使用傅立叶振幅敏感度测试(FAST),通过地形因子LS传播了由于坡度陡度,坡长和模型参数而引起的不确定性。执行空间方差划分以生成误差预算,并确定不确定性源。坡度是预测地形因子LS的最大方差,其次是坡度。模型参数和测量误差的方差贡献相对较小。结果为建模人员和决策者提供了用于误差管理的空间不确定性信息

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号