首页> 外文期刊>Transactions of the ASAE >STREAM FLOW ESTIMATION USING SPATIALLY DISTRIBUTED RAINFALL IN THE TRINITY RIVER BASIN, TEXAS
【24h】

STREAM FLOW ESTIMATION USING SPATIALLY DISTRIBUTED RAINFALL IN THE TRINITY RIVER BASIN, TEXAS

机译:德克萨斯州三流河盆地中使用空间分布降雨的流估计

获取原文
获取原文并翻译 | 示例

摘要

Rainfall is the driving force behind all hydrologic processes in a watershed, and therefore the driving force in hydrologic modeling. In the past, raingauge data has been used as the primary input for these models. However, raingauge networks are generally sparse and insufficient to capture the spatial variability across large watersheds. A relatively new alternative is high-resolution radar rainfall data from weather radar systems, such as the Next Generation Weather Radar (NEXRAD) of the National Weather Service (NWS). In this study, raingauge data were compared to NEXRAD data at each raingauge location to evaluate the accuracy and validity of rainfall data measured by radar. The main objective of this study was to evaluate the use of spatially distributed rainfall on stream flow estimation using radar rainfall inputs to a hydrologic model. SWAT, a distributed-parameter continuous-time hydrologic/water quality model, was used to estimate stream flow for a watershed in the Trinity River Basin of northeast Texas. Results obtained from simulations using NEXRAD rainfall inputs were compared to those obtained using traditional raingauge data as input to the same model. Estimation efficiency analysis was used to compare the storage volume for the Cedar Creek Reservoir with daily, ten-day, and monthly accumulated flow from SWAT simulations using raingauge and NEXRAD rainfall inputs. The efficiency for both models was similar; however, NEXRAD rainfall inputs seem to provide a better flow estimate. The accuracy of the model results suggest that NEXRAD is a good alternative to raingauge data, and can be extremely valuable in large watersheds without readily available raingauge data or sparse raingauge networks. In addition, NEXRAD can capture rainfall from localized events that may be missed by raingauge networks but that still contribute to overland runoff, thus contributing to stream flow
机译:降雨是流域中所有水文过程背后的驱动力,因此是水文模拟中的驱动力。过去,雨量计数据已用作这些模型的主要输入。但是,雨量计网络通常是稀疏的,不足以捕获大型流域的空间变化。相对较新的替代方法是来自气象雷达系统(例如国家气象局(NWS)的下一代气象雷达(NEXRAD))的高分辨率雷达降雨数据。在这项研究中,将雨量计数据与每个雨量计位置处的NEXRAD数据进行比较,以评估雷达测量的雨量数据的准确性和有效性。这项研究的主要目的是利用雷达降雨输入到水文模型中来评估空间分布降雨在流量估算中的应用。 SWAT是一种分布参数连续时间水文/水质模型,用于估算德克萨斯州东北部三位一体河流域的一个流域的水流量。使用NEXRAD降雨输入的模拟结果与使用传统雨量计数据输入相同模型的结果进行了比较。估算效率分析用于比较雪松溪水库的存储量与使用雨量计和NEXRAD降雨输入的SWAT模拟得出的每日,十天和每月累积流量。两种模型的效率都差不多。但是,NEXRAD的降雨输入似乎可以提供更好的流量估算。模型结果的准确性表明,NEXRAD是雨量计数据的良好替代方案,并且在没有易获得的雨量计数据或稀疏的雨量计网络的大型流域中,其价值非常可观。此外,NEXRAD可以从局部事件中捕获降雨,而雨量计网络可能会漏掉这些降雨,但仍会导致陆上径流,从而导致溪流

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号