首页> 外文期刊>Transactions of the ASAE >SOIL FERTILITY CHARACTERIZATION IN AGRICULTURAL FIELDS USING HYPERSPECTRAL REMOTE SENSING
【24h】

SOIL FERTILITY CHARACTERIZATION IN AGRICULTURAL FIELDS USING HYPERSPECTRAL REMOTE SENSING

机译:基于高光谱遥感的农田土壤肥力表征

获取原文
获取原文并翻译 | 示例

摘要

Airborne hyperspectral images provide high spatial and spectral resolution along with flexible temporal resolution that are ideally suited for precision agricultural applications. In this study, we have explored the potential of aerial visible/infrared (VIR) hyperspectral imagery for characterizing soil fertility factors in midwestern agricultural fields. Two fields (SW and NW) in Illinois and two fields (GV and FO) in Missouri were considered in this study. Field data included hyperspectral VIR images and soil fertility parameters including pH, organic matter (OM), Ca, Mg, P, K, and soil electrical conductivity. The VIR images were geo-registered and calibrated into apparent reflectance values. The FO field had the highest average reflectance, followed by SW, GV, and NW. The Illinois fields (SW and NW) were high in soil minerals, OM, and soil electrical conductivity. The measured soil fertility characteristics were modeled on first derivatives of the reflectance data using partial least square regression (PLSR). The PLSR model on derivative spectra was able to explain 66% of the overall variability in soil fertility variables considered in this study, with a predicted residual sum of square (PRESS) of 0.66. The model explained a higher degree of variability in some of the response variables, such as Ca (82%), Mg (72%), Veris shallow (86%), Veris deep (67%), and OM (66%), compared to factors such as pH (48%) and EM (50%). Analysis of the parameter estimates for each response variable showed that some of the wavebands, such as 625, 652, 658, 661, 754 and 784 nm, explained a high degree of variability in the model, whereas a large number of wavelengths had negligible contribution. In conclusion, this study showed that soil fertility factors important for precision agriculture applications can be successfully modeled on hyperspectral VIR remote sensing data with partial least square regression models
机译:机载高光谱图像可提供高空间和光谱分辨率以及灵活的时间分辨率,非常适合精密农业应用。在这项研究中,我们探索了航空可见/红外(VIR)高光谱图像表征中西部农业土壤肥力因子的潜力。本研究考虑了伊利诺伊州的两个油田(西南和西北)和密苏里州的两个油田(GV和FO)。现场数据包括高光谱VIR图像和土壤肥力参数,包括pH,有机物(OM),Ca,Mg,P,K和土壤电导率。将VIR图像进行地理配准并校准为视在反射率值。 FO场的平均反射率最高,其次是SW,GV和NW。伊利诺伊州田间(西南和西北)的土壤矿物质,有机质和土壤电导率很高。使用偏最小二乘回归(PLSR)在反射率数据的一阶导数上模拟测得的土壤肥力特征。导数光谱上的PLSR模型能够解释本研究中考虑的土壤肥力变量的66%的整体变异性,预测的残差平方和(PRESS)为0.66。该模型解释了某些响应变量的高度可变性,例如Ca(82%),Mg(72%),Veris浅(86%),Veris深(67%)和OM(66%),与pH(48%)和EM(50%)等因素相比。对每个响应变量的参数估计值的分析表明,某些波段(例如625、652、658、661、754和784 nm)解释了模型中的高度可变性,而大量波长的贡献可忽略不计。总之,这项研究表明,对于精确农业应用而言重要的土壤肥力因子可以通过偏最小二乘回归模型在高光谱VIR遥感数据上成功建模

著录项

  • 来源
    《Transactions of the ASAE》 |2005年第6期|p.00002399-00002406|共8页
  • 作者

    S. G. Bajwa; L. F. Tian;

  • 作者单位

    Sreekala G. Bajwa, ASABE Member Engineer, Assistant Professor, Department of Biological and Agricultural Engineering, University of Arkansas, Fayetteville, Arkansas;

    and Lei F. Tian, ASABE Member Engineer, Associate Professor, Department of Agricultural and Biological Engineering, University of Illinois, Urbana, Illinois. Corresponding author: Sreekala G. Bajwa, Department of Biological and Agricultural Engineering, University of Arkansas, 203 Engineering Hall, Fayetteville, AR 72701;

  • 收录信息
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

    Hyperspectral; Partial least square regression; Precision agriculture; Remote sensing; Soil electrical conductivity; Soil fertility;

    机译:高光谱;偏最小二乘回归;精准农业;遥感;土壤电导率;土壤肥力;

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号