首页> 外文期刊>Transactions of the ASABE >Using Aerial Hyperspectral Remote Sensing Imagery to Estimate Corn Plant Stand Density
【24h】

Using Aerial Hyperspectral Remote Sensing Imagery to Estimate Corn Plant Stand Density

机译:利用空中高光谱遥感影像估算玉米植株密度

获取原文
获取原文并翻译 | 示例

摘要

Since corn plant stand density is important for optimizing crop yield, several researchers have recently developed ground-based systems for automatic measurement of this crop growth parameter. Our objective was to use data from such a system to assess the potential for estimation of corn plant stand density using remote sensing images. Aerial hyperspectral remote sensing imagery was collected on three dates over three plots of corn in central Iowa during the 2004 growing season. The imagery had a spatial resolution of 1 m and a spectral resolution of 3 nm between 498 nm and 855 nm. A machine vision system for early-season measurement of corn plant stand density was also used to map every row of corn within the three plots, and a complete inventory of corn plants was generated as a rich ground reference dataset. A principal component regression analysis was used to assess relationships between plant stand density measurements and principal components of hyperspectral reflectance for each plot, on each image collection date, and at three different spatial resolutions (2, 6, and 10 m). The maximum R 2 for regressions was 0.79. Estimates of corn plant stand density were best when using imagery collected at the later vegetative and early reproductive corn growth stages. Quantization effects due to row width complicated corn plant stand density estimates at 2 m spatial resolution, and better estimations were typically seen at resolutions of 6 m and 10 m. Among the different cases of plot, image date, and spatial resolution, the principal components of reflectance most highly correlated with plant stand density were able to be classified into four distinct types, denoted as types A, B, C, and D. Type A principal components contrasted all available visible red wavelengths with all available near-infrared wavelengths. Type B principal components contrasted green wavelengths (531 to 552 nm) plus shorter wave near-infrared (759 nm) with red wavelengths (675 to 693 nm) plus longer wave near-infrared (852 nm). Type C principal components summed green wavelengths (528 to 546 nm) and near-infrared wavelengths (717 to 855 nm). Type D principal components contrasted blue/green wavelengths (498 to 507 nm) with the red edge (717 nm). Remote sensing can be best used to estimate corn plant stand density at mid-season as long as plant stand variability exists and variability due to other factors is minimal.
机译:由于玉米的林分密度对于优化农作物的产量很重要,因此一些研究人员最近开发了基于地面的系统来自动测量该农作物的生长参数。我们的目标是使用来自此类系统的数据来评估使用遥感图像估算玉米植株密度的潜力。在2004年生长季节期间,在爱荷华州中部的三个玉米田中的三个日期收集了空中高光谱遥感影像。图像的空间分辨率为1 m,光谱分辨率为498 nm至855 nm之间的3 nm。还使用了用于早期季节测量玉米植株密度的机器视觉系统来绘制三个地块中每行玉米的地图,并生成了完整的玉米植株清单作为丰富的地面参考数据集。主成分回归分析用于评估每个样地,每个图像采集日期以及三种不同的空间分辨率(2、6和10 m)下植物密度测量值与高光谱反射率主成分之间的关​​系。回归的最大R 2为0.79。当使用在后期植物性玉米生长期和早期生殖玉米期收集的图像时,估计玉米植株密度是最好的。在2 m空间分辨率下,由于行宽复杂的玉米植株密度估计而产生的量化效应,并且在6 m和10 m的分辨率下通常可以看到更好的估计。在不同的样地,图像日期和空间分辨率情况下,与植物密度密切相关的反射率主要成分可以分为四种不同的类型,分别表示为A,B,C和D型。主要成分将所有可用的可见红色波长与所有可用的近红外波长进行了对比。 B型主要成分将绿色波长(531至552 nm)加较短波长的近红外波(759 nm)与红色波长(675至693 nm)加较长波长的近红外(852 nm)形成对比。 C型主要成分的总和为绿色波长(528至546 nm)和近红外波长(717至855 nm)。 D型主要成分将蓝色/绿色波长(498至507 nm)与红色边缘(717 nm)形成对比。只要存在农作物林分变异性且由于其他因素而导致的变异性极小,则最好用遥感技术估算季节中期的玉米植物林分密度。

著录项

  • 来源
    《Transactions of the ASABE》 |2008年第1期|p.311-320|共10页
  • 作者单位

    The authors are Kelly R. Thorp, ASABE Member Engineer, Research Agricultural Engineer, USDA-ARS U.S. Arid-Land Agricultural Research Center, Maricopa, Arizona;

    Brian L. Steward, ASABE Member Engineer, Associate Professor, and Amy L. Kaleita, ASABE Member Engineer, Assistant Professor, Department of Agricultural and Biosystems Engineering, Iowa State University, Ames, Iowa;

    and William David Batchelor, ASABE Member Engineer, Professor and Department Head, Department of Agricultural and Biological Engineering, Mississippi State University, Mississippi State, Mississippi. Corresponding author: Kelly R. Thorp, USDA-ARS USALARC, 21881 N Cardon Ln., Maricopa, AZ 85238;

    phone: 520-316-6375;

    fax: 520-316-6330;

    e-mail: Kelly.Thorp@ars.usda.gov.;

  • 收录信息
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

    Corn, Hyperspectral, Machine vision, Population, Remote sensing, Spatial variability, Stand density;

    机译:玉米;高光谱;机器视觉;种群;遥感;空间变异性;林分密度;

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号