首页> 外文期刊>Transactions of the ASABE >Using aerial hyperspectral remote sensing imagery to estimate corn plant stand density.
【24h】

Using aerial hyperspectral remote sensing imagery to estimate corn plant stand density.

机译:使用空中高光谱遥感影像估算玉米植株密度。

获取原文
获取原文并翻译 | 示例
           

摘要

Since maize plant stand density is important for optimizing crop yield, several researchers have recently developed ground-based systems for automatic measurement of this crop growth parameter. Our objective was to use data from such a system to assess the potential for estimation of maize plant stand density using remote sensing images. Aerial hyperspectral remote sensing imagery was collected on three dates (22 June, 25 July and 3 September) over three plots of maize in central Iowa, USA, during the 2004 growing season. The imagery had a spatial resolution of 1 m and a spectral resolution of 3 nm between 498 and 855 nm. A machine vision system for early-season measurement of maize plant stand density was also used to map every row of maize within the three plots, and a complete inventory of maize plants was generated as a rich ground reference dataset. A principal component regression analysis was used to assess relationships between plant stand density measurements and principal components of hyperspectral reflectance for each plot, on each image collection date, and at three different spatial resolutions (2, 6, and 10 m). The maximum R2 for regressions was 0.79. Estimates of maize plant stand density were best when using imagery collected at the later vegetative and early reproductive maize growth stages. Quantization effects due to row width complicated maize plant stand density estimates at 2-m spatial resolution, and better estimations were typically seen at resolutions of 6 and 10 m. Among the different cases of plot, image date, and spatial resolution, the principal components of reflectance most highly correlated with plant stand density were classified into four distinct types, denoted as types A, B, C, and D. Type A principal components contrasted all available visible red wavelengths with all available near-infrared wavelengths. Type B principal components contrasted green wavelengths (531 to 552 nm) plus shorter wave near-infrared (759 nm) with red wavelengths (675 to 693 nm) plus longer wave near-infrared (852 nm). Type C principal components summed green wavelengths (528 to 546 nm) and near-infrared wavelengths (717 to 855 nm). Type D principal components contrasted blue/green wavelengths (498 to 507 nm) with the red edge (717 nm). Remote sensing can be best used to estimate maize plant stand density at mid-season as long as plant stand variability exists and variability due to other factors is minimal.
机译:由于玉米植株密度对于优化农作物产量至关重要,因此一些研究人员最近开发了基于地面的系统来自动测量该农作物生长参数。我们的目标是使用来自此类系统的数据来评估使用遥感图像估算玉米植株密度的潜力。在2004年生长季节期间,在美国爱荷华州中部的三个玉米田中的三个日期(6月22日,7月25日和9月3日)收集了空中高光谱遥感影像。图像的空间分辨率为1 m,光谱分辨率为498至855 nm之间的3 nm。还使用了用于早期季节测量玉米植株密度的机器视觉系统来绘制三个地块中每行玉米的地图,并生成了完整的玉米植物清单作为丰富的地面参考数据集。主成分回归分析用于评估每个样地,每个图像采集日期以及三种不同的空间分辨率(2、6和10 m)下植物密度测量值与高光谱反射率主成分之间的关​​系。回归的最大R2为0.79。当使用在营养晚期和生殖玉米早期生长阶段收集的图像时,对玉米植株密度的估计最好。在2 m空间分辨率下,由于行宽复杂的玉米植株密度估计而产生的量化效应,在6和10 m的分辨率下通常可以看到更好的估计。在不同的样地,图像日期和空间分辨率情况下,与植物密度最相关的反射率主要成分分为四种不同的类型,分别表示为A,B,C和D型。所有可用的可见红色波长和所有可用的近红外波长。 B型主要成分将绿色波长(531至552 nm)加较短波长的近红外波(759 nm)与红色波长(675至693 nm)加较长波长的近红外(852 nm)形成对比。 C型主要成分的总和为绿色波长(528至546 nm)和近红外波长(717至855 nm)。 D型主要成分将蓝色/绿色波长(498至507 nm)与红色边缘(717 nm)形成对比。只要存在植株变异性,并且由于其他因素引起的变异性最小,则最好使用遥感技术来估计季节中期的玉米植株密度。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号