首页> 外文期刊>IEEE Transactions on Biometrics, Behavior, and Identity Science >CASIA-SURF: A Large-Scale Multi-Modal Benchmark for Face Anti-Spoofing
【24h】

CASIA-SURF: A Large-Scale Multi-Modal Benchmark for Face Anti-Spoofing

机译:Casia-surf:面部防欺骗的大型多模态基准测试

获取原文
获取原文并翻译 | 示例

摘要

Face anti-spoofing is essential to prevent face recognition systems from a security breach. Much of the progresses have been made by the availability of face anti-spoofing benchmark datasets in recent years. However, existing face anti-spoofing benchmarks have limited number of subjects (≤170) and modalities (≤2), which hinder the further development of the academic community. To facilitate face anti-spoofing research, we introduce a large-scale multi-modal dataset, namely CASIA-SURF, which is the largest publicly available dataset for face anti-spoofing in terms of both subjects and modalities. Specifically, it consists of 1,000 subjects with 21,000 videos and each sample has 3 modalities (i.e., RGB, Depth and IR). We also provide comprehensive evaluation metrics, diverse evaluation protocols, training/validation/testing subsets and a measurement tool, developing a new benchmark for face anti-spoofing. Moreover, we present a novel multi-modal multi-scale fusion method as a strong baseline, which performs feature re-weighting to select the more informative channel features while suppressing the less useful ones for each modality across different scales. Extensive experiments have been conducted on the proposed dataset to verify its significance and generalization capability. The dataset is available at https://sites.google.com/qq.com/face-anti-spoofing/welcome/challengecvpr2019?authuser=0.
机译:面部反欺骗对于防止安全漏洞的面部识别系统至关重要。近年来面临反欺骗基准数据集的脸部防欺骗基准数据集的许多进展已经取得了大部分。然而,现有的脸部反欺骗基准有限数量有限(≤170)和方式(≤2),这阻碍了学术界的进一步发展。为了促进面对防欺骗研究,我们引入了一个大型多模态数据集,即卡西亚海浪,这是一个最大的公共可用数据集,用于对象和方式的面部反欺骗。具体来说,它由1,000个受试者组成,具有21,000个视频,每个样品有3个模态( i.e. ,RGB,深度和IR)。我们还提供全面的评估指标,多样化的评估协议,培训/验证/测试子集和测量工具,为面部​​反欺人开发新的基准。此外,我们提出了一种新的多模态多尺度融合方法作为强基线,其执行重新加权以选择更具信息丰富的信道特征,同时抑制不同尺度的每个模态的有用频道功能。在拟议的数据集上进行了广泛的实验,以验证其重要性和泛化能力。数据集可用 https://sites.google .com / qq.com /面部反欺骗/欢迎/ chatrengecvpr2019?authuser = 0

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号