首页> 外文期刊>Topology and its applications >Singularities of meager composants and filament composants
【24h】

Singularities of meager composants and filament composants

机译:微不足道的组件和灯丝组件的奇异之处

获取原文
获取原文并翻译 | 示例

摘要

Suppose Y is a continuum and X is the union of all nowhere dense subcontinua of Y which contain a given point. Suppose further that there exists y is an element of Y such that every connected subset of X limiting to y is dense in X. And, suppose X is dense in Y. We prove X boolean OR {y} is indecomposable for every y is an element of Y. We then prove X is homeomorphic to a composant of an indecomposable continuum, even though Y may be decomposable. An example establishing the latter was given by Christopher Mouron and Norberto Ordofiez in 2016. If Y is chainable or, more generally, an inverse limit of mutually homeomorphic topological graphs, then Y is necessarily indecomposable. Similar results for homogeneous continua are linked to a 2007 question of Janusz Prajs and Keith Whittington. (C) 2019 Elsevier B.V. All rights reserved.
机译:假设Y是一个连续体,X是包含给定点的Y的所有无位稠密子连续体的并集。进一步假设存在y是Y的一个元素,使得X的每个连接子集限制为y在X中都是稠密的。并且,假设X在Y中是稠密的。我们证明X布尔OR {y}对于每个y是不可分解的然后我们证明X是不可分解的连续体的同构同胚的,即使Y可能是可分解的。 Christopher Mouron和Norberto Ordofiez在2016年给出了建立后者的示例。如果Y是可链接的,或更笼统地说是互同胚拓扑图的逆极限,则Y必不可分解。均质连续性的类似结果与Janusz Prajs和Keith Whittington的2007年问题有关。 (C)2019 Elsevier B.V.保留所有权利。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号