首页> 外文期刊>Topology and its applications >The essential Lagrangian-Grassmannian and the homotopy type of the Fredholm Lagrangian-Grassmannian
【24h】

The essential Lagrangian-Grassmannian and the homotopy type of the Fredholm Lagrangian-Grassmannian

机译:基本拉格朗日-格拉斯曼式和Fredholm拉格朗日-格拉斯曼式的同伦型

获取原文
获取原文并翻译 | 示例

摘要

Let H be a separable infinite dimensional Hilbert space endowed with a symplectic structure and let L_0 is contained in H be a Lagrangian subspace. Using the results of [A. Abbondandolo, P. Majer, Infinite dimensional Grassmannians, math.AT/0307192], we show that the Fredholm Lagrangian-Grassmannian F_(L_0)(Λ) has the homotopy type of g_c(L_0). the Grassmannian of all Lagrangian subspaces of H that are compact perturbations of L_0. It is well known that the latter has the homotopy type of the quotient U(∞)/O(∞). As a corollary, we recover a result by B. Booss-Bavnbek and K. Furutani (see [B. Booss-Bavnbek, K. Furutani, Symplectic functional analysis and spectral invariants, Contemp. Math. 242 (1999) 53-83; K. Furutani, Fredholm-Lagrangian-Grassmannian and the Maslov index, J. Geom. Phys. 51 (2004) 269-331]) that the L_0-Maslov index is an isomorphism between the fundamental group of F_(L_0)(Λ) and the integers.
机译:设H为具有辛结构的可分离的无穷维希尔伯特空间,使L_0包含在H中为拉格朗日子空间。使用[A. Abbondandolo,P. Majer,无限维Grassmannians,数学AT / 0307192],我们证明了Fredholm Lagrangian-Grassmannian F_(L_0)(Λ)具有g_c(L_0)的同伦型。 H的所有Lagrangian子空间的Grassmannian,它们是L_0的紧摄动。众所周知,后者具有U(∞)/ O(∞)商的同伦型。作为推论,我们从B. Booss-Bavnbek和K. Furutani中获得了一个结果(请参阅[B. Booss-Bavnbek,K。Furutani,辛函数分析和谱不变式,Contemp。Math。242(1999)53-83; K. Furutani,Fredholm-Lagrangian-Grassmannian和Maslov指数,J。Geom。Phys。51(2004)269-331]),L_0-Maslov指数是F_(L_0)(Λ)基本群之间的同构和整数。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号