首页> 外文期刊>Topology and its applications >An elementary approach to Haar integration and Pontryagin duality in locally compact abelian groups
【24h】

An elementary approach to Haar integration and Pontryagin duality in locally compact abelian groups

机译:局部紧凑的阿贝尔群中Haar积分和Pontryagin对偶性的基本方法

获取原文
获取原文并翻译 | 示例

摘要

We offer an elementary proof of Pontryagin duality theorem for compact and discrete abelian groups. To this end we make use of an elementary proof of Peter-Weyl theorem due to Prodanov that makes no recourse to Haar integral. As a long series of applications of this approach we obtain proofs of Bohr-von Neumann's theorem on almost periodic functions, Comfort-Ross' theorem on the description of the precompact topologies on abelian groups, and, last but not least, the existence of Haar integral in LCA groups.
机译:我们为紧的和离散的阿贝尔群提供庞特里亚金对偶定理的基本证明。为此,由于Prodanov,我们利用了Peter-Weyl定理的基本证明,该证明不求助于Haar积分。作为这种方法的一连串应用,我们获得了Bohr-von Neumann定理在几乎周期函数上的证明,Comfort-Ross定理在阿贝尔群上的预紧拓扑的描述上的证明,以及最后但同样重要的是Haar的存在在LCA组中不可或缺。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号