首页> 外文期刊>Thin-Walled Structures >Optimization of thin-walled structures with geometric nonlinearity for maximum critical buckling load using optimality criteria
【24h】

Optimization of thin-walled structures with geometric nonlinearity for maximum critical buckling load using optimality criteria

机译:使用最优性准则优化具有最大非线性屈曲载荷的几何非线性薄壁结构

获取原文
获取原文并翻译 | 示例

摘要

In this study, two optimality criteria are presented for shape optimization of thin-walled structures with geometric nonlinearity modeled by finite elements. The optimization problem considers the thickness and geometry design variables, and aims to maximize the critical load of the structure subject to constant total mass. Results of the optimization with optimality criteria are compared with those found by the gradient-based sequential quadratic programming method. It is shown that the optimum shape can be found using this method without performing the sensitivity analysis, and in less number of iterations compared to the standard gradient-based methods of optimization.
机译:在这项研究中,提出了两个优化准则,用于通过有限元建模的几何非线性来优化薄壁结构的形状。优化问题考虑了厚度和几何设计变量,旨在在恒定总质量的情况下最大化结构的临界载荷。将具有最佳性标准的优化结果与通过基于梯度的顺序二次规划方法找到的结果进行比较。结果表明,与基于标准梯度的优化方法相比,使用这种方法无需进行敏感性分析即可找到最佳形状,并且迭代次数更少。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号