首页> 外文期刊>Thin-Walled Structures >Buckling analysis of stiffened plates subjected to non-uniform biaxial compressive loads using conventional and super finite elements
【24h】

Buckling analysis of stiffened plates subjected to non-uniform biaxial compressive loads using conventional and super finite elements

机译:使用常规和超有限元的加筋板承受非均匀双轴压缩载荷的屈曲分析

获取原文
获取原文并翻译 | 示例

摘要

This paper presents the buckling analysis of stiffened plates, using both conventional and super finite element methods. Mindlin plate and Timoshenko beam theories are utilized so as to formulate the plate and stiffeners, respectively. The arbitrary oriented stiffeners can be positioned anywhere within the plate element and are not limited to be placed on nodal lines. Therefore, any configuration of plate and stiffeners can be modeled. Furthermore, extensive boundary conditions as well as general in-plane loading conditions can be considered using the proposed method. As the applied in-plane loads are not uniform, the buckling load is evaluated in two steps. First, the elasticity problem is solved to determine the stress distribution in prebuckling stage. Applying the principle of minimum potential energy, based on derived stress distribution, yields to the buckling equation of stiffened plates. Numerical examples are proposed to study the accuracy and efficiency of the developed super elements. Effects of various combinations of biaxial loads along with different boundary conditions on buckling characteristics of stiffened panels are also investigated.
机译:本文介绍了使用传统方法和超有限元方法对加筋板进行屈曲分析。利用Mindlin板和Timoshenko梁理论来分别制定板和加劲肋。可以将任意定向的加劲肋放置在板元件内的任何位置,并且不限于放置在节点线上。因此,可以对板和加劲肋的任何配置进行建模。此外,使用所提出的方法可以考虑广泛的边界条件以及一般的平面内载荷条件。由于施加的面内载荷不均匀,因此分两步评估屈曲载荷。首先,解决弹性问题以确定预屈曲阶段的应力分布。应用最小势能原理,基于导出的应力分布,可以得出加劲板的屈曲方程。数值例子被提出来研究所开发的超级元件的准确性和效率。还研究了双轴载荷的各种组合以及不同的边界条件对加劲板屈曲特性的影响。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号