首页> 外文期刊>Thin-Walled Structures >Notch stress intensity factor for center cracked plates with crack stop hole strengthened using CFRP: A numerical study
【24h】

Notch stress intensity factor for center cracked plates with crack stop hole strengthened using CFRP: A numerical study

机译:CFRP加固带止裂孔的中心裂纹板的缺口应力强度因子:数值研究

获取原文
获取原文并翻译 | 示例

摘要

It is well known that drilling a hole ahead of crack tip is one of the most common techniques to prevent crack propagation in structures subjected to fatigue load. An adequate size crack stop hole is necessary to convert a sharp crack into a blunt notch thereby preventing crack propagation. However, fatigue cracks typically occur at locations where drilling a crack-stop hole of required dimensions may not be possible due to geometrical constraints. In such situations, the crack may initiate again from the hole within its service life. Hence, there is a need to strengthen undersized crack-stop holes. In the present study, a combination of crack-stop hole and carbon fiber reinforced polymer (CFRP) overlays under static loads are studied numerically using finite element analysis (FEA) to evaluate its potential as a viable repair technique. A steel plate with an initial central crack subjected to static tensile loading (mode-I) is considered. A hole is modelled ahead of a crack tip and CFRP patches are applied on either side of the crack. The numerical analysis is performed using general purpose FEA ANSYS. A total of 1008 models, i.e 112 unstrengthened and 896 strengthened specimens are used to evaluate the stress intensity factor at notch tip. The material behaviour is assumed to be elastic in case of linear analysis and as a multi linear isotropic hardening material type for nonlinear analysis. The results from linear analysis are used to compare Crack Stress Intensity Factor (CSIF, K-I/root rho) and Notch Stress Intensity Factor (NSIF, K-I/rho(alpha)). The results indicate the need to include the stress gradient alpha in arriving at adequate crack stop hole radius for both bare steel and CFRP patched specimens. Nonlinear FEA, which takes into account the post yield material behaviour, is carried out to propose a modified NSIF expression by including a Reduction Factor (RF) that is a function of the ratio of the radius of crack stop hole to crack length (rho/2a), the ratio of stiffness of CFRP to steel (SR) and the ratio of applied stress to yield stress (sigma(applied)/sigma(ys)). Numerical examples are provided to demonstrate the applicability of the proposed equation. (C) 2015 Elsevier Ltd. All rights reserved.
机译:众所周知,在裂纹尖端之前钻孔是防止裂纹在承受疲劳载荷的结构中传播的最常用技术之一。必须有足够大小的止裂孔,才能将尖锐的裂纹转化为钝的缺口,从而防止裂纹扩展。但是,疲劳裂纹通常发生在由于几何约束而无法钻出所需尺寸的止裂孔的位置。在这种情况下,裂纹可能会在使用寿命范围内再次从孔中引发。因此,需要加强尺寸较小的止裂孔。在本研究中,采用有限元分析(FEA)数值研究了静载荷作用下止裂孔和碳纤维增强聚合物(CFRP)覆盖层的组合,以评估其作为可行修复技术的潜力。考虑具有初始中心裂纹且经受静态拉伸载荷(I型)的钢板。在裂纹尖端之前对孔建模,并在裂纹的任一侧应用CFRP贴片。使用通用FEA ANSYS进行数值分析。总共1008个模型,即112个未加强的模型和896个加强的样本,用于评估缺口尖端的应力强度因子。在线性分析的情况下,材料行为被认为是弹性的,在非线性分析中,材料行为被视为多线性各向同性硬化材料。线性分析的结果用于比较裂纹应力强度因子(CSIF,K-I / root rho)和缺口应力强度因子(NSIF,K-1 /rhoα)。结果表明,对于裸钢和CFRP修补试样,在达到足够的止裂孔半径时需要包括应力梯度α。考虑到屈服后材料的行为,进行了非线性有限元分析,提出了修正的NSIF表达式,方法是包括一个减小因子(RF),该因子是止裂孔半径与裂纹长度之比(rho / 2a)中,CFRP与钢的刚度之比(SR)和外加应力与屈服应力之比(sigma(applied)/ sigma(ys))。提供了数值示例来证明所提出方程的适用性。 (C)2015 Elsevier Ltd.保留所有权利。

著录项

  • 来源
    《Thin-Walled Structures》 |2016年第janaptab期|252-262|共11页
  • 作者单位

    Indian Inst Technol IIT Hyderabad, Dept Civil Engn, Struct Engn Div, Yeddumailaram 502205, Telangana, India;

    Indian Inst Technol IIT Hyderabad, Dept Civil Engn, Struct Engn Div, Yeddumailaram 502205, Telangana, India;

    Indian Inst Technol IIT Hyderabad, Dept Civil Engn, Struct Engn Div, Yeddumailaram 502205, Telangana, India;

    Indian Inst Technol IIT Hyderabad, Dept Civil Engn, Struct Engn Div, Yeddumailaram 502205, Telangana, India;

  • 收录信息 美国《科学引文索引》(SCI);美国《工程索引》(EI);
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

    Crack-stop hole; CFRP patch; K-I/root rho; K-I/rho(alpha); Stiffness ratio; Load ratio;

    机译:止裂孔;CFRP贴剂;K-I /根rho;K-I /rhoα;刚度比;载荷比;

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号