首页> 外文期刊>Thin-Walled Structures >Dynamic instability analysis of porous FGM conical shells subjected to parametric excitation in thermal environment within FSDT
【24h】

Dynamic instability analysis of porous FGM conical shells subjected to parametric excitation in thermal environment within FSDT

机译:FSDT在热环境中进行参数激发的多孔FGM锥形壳的动态稳定性分析

获取原文
获取原文并翻译 | 示例

摘要

The conical shell structure is prone to dynamic instability when subjected to time dependent periodic axial loads and it can cause structural damage. Based on that this paper presents an accurate and semi-analytical method for investigation the dynamic instability of porous functionally graded material (PFGM) conical shell in thermal environment. In the analysis, three common types of PFGM conical shells, namely, uniform, symmetric and asymmetric distribution are considered assuming that material properties are related to temperature. The governing equations of conical shell subjected to parametric excitation are established by the Hamilton's principle considering first order shear deformation theory. Then the Mathieu-Hill equations describing the parametric stability of conical shell are obtained by generalized differential quadrature (GDQ) method, and the Bolotin's method is utilized to obtain the first-order approximations of principal instability regions of shell structure. By comparing the numerical results with the existing solutions in open literature, the validity of the proposed theoretical model is verified. Finally, the influences of porosity distribution type, gradient index, radius-to-thickness ratio, porosity volume fraction and temperature fields on the dynamic stability of PFGM conical shell have been investigated, wherein for different porosity distribution types, the UPD type is more sensitive to gradient index as compared to other three types, while the SPD has the minimum relative width.
机译:当经过时间依赖性周期性轴向载荷时,锥形壳结构易于动态不稳定性,并且它会导致结构损坏。基于本文提出了一种精确和半分析方法,用于研究热环境中多孔功能分级材料(PFGM)锥形壳的动态不稳定性。在分析中,假设材料特性与温度有关,考虑了三种常见类型的PFGM锥形壳,即均匀,对称和不对称分布。考虑一阶剪切变形理论,由汉密尔顿原则建立了对参数激发的锥形壳的控制方程。然后,通过广义差分正交(GDQ)方法获得描述锥形壳的参数稳定性的Mathieu-Hill方程,并且利用Bolotin的方法获得壳结构的主不稳定区域的一阶近似。通过将数值结果与公开文献中的现有解决方案进行比较,验证了所提出的理论模型的有效性。最后,研究了孔隙率分布型,梯度指数,半径到厚度比,孔隙率体积分数和温度场对PFGM锥形壳体的动态稳定性的影响,其中对于不同的孔隙率分布类型,更新类型更敏感与其他三种类型相比,梯度指数,而SPD具有最小相对宽度。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号