首页> 外文期刊>Thin-Walled Structures >Displacement-based formulation of Koiter's method: Application to multi-modal post-buckling finite element analysis of plates
【24h】

Displacement-based formulation of Koiter's method: Application to multi-modal post-buckling finite element analysis of plates

机译:基于位移的Koiter方法制剂:适用于板的多模态后屈曲有限元分析

获取原文
获取原文并翻译 | 示例

摘要

Koiter's asymptotic method enables the calculation and deep understanding of the initial post-buckling behaviour of thin-walled structures. For the single-mode asymptotic analysis, Budiansky (1974) presented a clear and general formulation for Koiter's method, based on the expansion of the total potential energy function. The formulation from Budiansky is herein revisited and expanded for the multi-modal asymptotic analysis, of primordial importance in structures with clustered bifurcation modes. Given the admittedly difficult implementation of Koiter's method, especially for multi-modal analysis and during the evaluation of the third- and fourth-order tensors involved in Koiter's analysis; the presented study proposes a formulation and notation with close correspondence with the implemented algorithms. The implementation is based on state-of-the-art collaborative tools: Python, NumPy and Cython. The kinematic relations are specialized using von Karmen shell kinematics, and the displacement field variables are approximated using an enhanced Bogner-Fox-Schmit (BFS) finite element, modified to reach third-order interpolation also for the in-plane displacements, using only 4 nodes per element and 10 degrees-of-freedom per node, aiming an accurate representation of the second-order fields. The formulation and implementation are verified by comparing results for isotropic and composite plates against established literature. Finally, results for multi-modal displacement fields with up to 5 modes and corresponding post-buckling factors are reported for future reference.
机译:Koiter的渐近方法可以计算和深入了解薄壁结构的初始屈曲行为。对于单模渐近分析,Budiansky(1974)基于总潜在能量功能的扩展,展示了对Koiter的方法的明确和一般的制定。来自Budiansky的制剂在此重新判断并扩大了多种模态渐近分析,其在具有聚类分叉模式的结构中的原始重要性。鉴于Koiter的方法难以难以实现,特别是对于多模态分析以及评估Koiter分析中涉及的第三阶张力;本研究提出了与实施算法密切对应的配方和符号。实施基于最先进的协作工具:Python,Numpy和Cython。使用Von Karmen Shell运动学专门使用Von Karmen Shell Kinematics,使用增强型Bogner-Fox-Schmit(BFS)有限元进行近似的位移场变量,修改为仅适用于面内位移的三阶插值,仅使用4每个元素的节点和每个节点的10度自由度,旨在准确表示二阶字段。通过比较各向同性和复合板对已建立文献的结果来验证制剂和实施。最后,报告了多于5种模式和相应的后屈曲因子的多模态位移场的结果,以备将来参考。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号