首页> 外文期刊>Thin-Walled Structures >3D numerical simulation of the gas detonation forming of aluminum tubes considering fluid-structure interaction and chemical kinetic model
【24h】

3D numerical simulation of the gas detonation forming of aluminum tubes considering fluid-structure interaction and chemical kinetic model

机译:考虑流体结构相互作用和化学动力学模型的铝管气体爆轰的3D数值模拟

获取原文
获取原文并翻译 | 示例
           

摘要

The present study deals with the numerical simulation of the dynamic response of the pure aluminum AA1050 tube under internal gas mixture detonation loading. This practical topic involves structural large plastic deformation, fluid motion, and chemical reaction, and detonation wave/structure interaction. Therefore, the FluidStructure Interaction (FSI) with finite-rate chemistry in compressible Conservation Element/Solution Element (CESE) solver with the Immersed Boundary Method (IBM) was used to model the real situation of the whole forming process. The numerical model was verified with existing experimental data for aluminum tubes under internal gas detonation of H2+O2 in terms of the pressure-time history and deformation pattern. Moreover, the simulation results were also compared to those numerical ones in the open literature. It is found that the current numerical modelling approach reproduces the experimental observations very well, and it has a more accurate prediction capability in comparison to the reported study. Hence, the present numerical approach can be used for the design of pressure vessels and piping systems subjected to internal gas detonation loading and also further studies on hazard analysis of pipeline explosion accidents. Moreover, the effect of ignition point location, double ignition points, initial pressure, and repeated loading on the response was investigated. The results show that an experimental setup with double ignition points gives a uniform distribution for plastic deformation in the longitudinal direction of the tube while the ignition point is located at a distance of 1/6 length of the tube from both ends. Furthermore, the double gas detonation loading at the low initial pressure of 0.85 MPa gives the same result obtained for single loading at the moderate initial pressure of 1.2 MPa.
机译:本研究涉及纯铝AA1050管在内部气体混合物爆轰负载下的动态响应的数值模拟。这种实用主题涉及结构大的塑性变形,流体运动和化学反应,以及爆轰波/结构相互作用。因此,使用具有浸没边界法(IBM)的可压缩保存元件/溶液元件(CESE)求解器的有限速率化学的流体结构相互作用(FSI)来模拟整个成形过程的实际情况。在压力 - 时历史和变形图案方面,用铝管的现有实验数据验证了数值模型。此外,仿真结果也与开放文献中的数控结果进行了比较。结果发现,目前的数值建模方法非常好地再现实验观察,并且与报告的研究相比,它具有更准确的预测能力。因此,本发明的数值方法可用于设计内部气体爆炸负荷的压力容器和管道系统,以及进一步研究管道爆炸事故的危害分析。此外,研究了点火点位置,双点火点,初始压力和反复加载对响应的影响。结果表明,具有双点火点的实验装置在管的纵向方向上具有均匀的塑性变形分布,而点火点位于从两端的1/6长度的长度的距离处。此外,低初始压力为0.85MPa的双气体爆震加载,得到相同的结果,在1.2MPa的中等初始压力下单一负载获得。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号