首页> 外文期刊>Atmospheric chemistry and physics >Kinetic model framework for aerosol and cloud surface chemistry and gas-particle interactions – Part 2: Exemplary practical applications and numerical simulations
【24h】

Kinetic model framework for aerosol and cloud surface chemistry and gas-particle interactions – Part 2: Exemplary practical applications and numerical simulations

机译:用于气溶胶和云表面化学以及气体-颗粒相互作用的动力学模型框架第2部分:示例性实际应用和数值模拟

获取原文
           

摘要

A kinetic model framework with consistent and unambiguousterminology and universally applicable rate equations and parametersfor aerosol and cloud surface chemistry and gas-particleinteractions has been presented in the preceding companion paper byP?schl, Rudich and Ammann (P?schl et al., 2007), abbreviatedPRA. It allows to describe mass transport and chemical reaction atthe gas-particle interface and to link aerosol and cloud surfaceprocesses with gas phase and particle bulk processes. Here wepresent multiple exemplary model systems and calculationsillustrating how the general mass balance and rate equations of thePRA framework can be easily reduced to compact sets of equationswhich enable a mechanistic description of time and concentrationdependencies of trace gas uptake and particle composition in systemswith one or more chemical components and physicochemical processes.Time-dependent model scenarios show the effects of reversibleadsorption, surface-bulk transport, and chemical aging on thetemporal evolution of trace gas uptake by solid particles andsolubility saturation of liquid particles. They demonstrate how thetransformation of particles and the variation of trace gasaccommodation and uptake coefficients by orders of magnitude overtime scales of microseconds to days can be explained and predictedfrom the initial composition and basic kinetic parameters of modelsystems by iterative calculations using standard spreadsheetprograms. Moreover, they show how apparently inconsistentexperimental data sets obtained with different techniques and ondifferent time scales can be efficiently linked and mechanisticallyexplained by application of consistent model formalisms andterminologies within the PRA framework.Steady-state model scenarios illustrate characteristic effects ofgas phase composition and basic kinetic parameters on the rates ofmass transport and chemical reactions. They demonstrate howadsorption and surface saturation effects can explain non-linear gasphase concentration dependencies of surface and bulk accommodationcoefficients, uptake coefficients, and bulk solubilities (deviationsfrom Henry's law). Such effects are expected to play an importantrole in many real atmospheric aerosol and cloud systems involving awide range of organic and inorganic components of concentratedaqueous and organic solution droplets, ice crystals, and othercrystalline or amorphous solid particles.
机译:P?schl,Rudich和Ammann(P?schl et al。,2007)提出了一个动力学模型框架,该模型具有一致且明确的术语以及适用于气溶胶和云表面化学以及气体-颗粒相互作用的速率方程和参数。缩写PRA。它允许描述气-质界面处的质量传输和化学反应,并将气溶胶和云的表面过程与气相和颗粒体过程联系起来。在这里,我们展示了多个示例性模型系统和计算,它们说明了如何轻松地将PRA框架的一般质量平衡和速率方程式简化为紧凑的方程式集,从而能够对具有一种或多种化学成分的系统中痕量气体吸收和颗粒成分的时间和浓度依赖性进行机械描述。时间相关的模型方案显示了可逆吸附,表面体运输和化学老化对固体颗粒吸收痕量气体的时间演变和液体颗粒的溶解度饱和的影响。他们演示了如何通过使用标准电子表格程序进行迭代计算,从模型系统的初始组成和基本动力学参数,通过模型系统的初始组成和基本动力学参数来解释和预测颗粒的转化以及痕量气体容纳量和吸收系数的变化(从微秒到天的数量级)。此外,它们显示了如何通过在PRA框架内应用一致的模型形式和术语来有效地链接和机械解释用不同技术和不同时标获得的不一致的实验数据集。相组成和基本动力学参数对传质和化学反应速率的影响他们证明了吸附和表面饱和效应是如何解释表面和整体调节系数,吸收系数和整体溶解度(与亨利定律的偏离)的非线性气相浓度依赖性的。预计在许多实际的大气气溶胶和云系统中,这种作用将发挥重要作用,涉及大量的有机和无机成分,包括浓缩的水溶液和有机溶液液滴,冰晶以及其他晶体或无定形固体颗粒。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号