首页> 外文期刊>Thin-Walled Structures >Tensor-decomposition based matrix computation: A fast method for the isogeometric FSDT analysis of laminated composite plate
【24h】

Tensor-decomposition based matrix computation: A fast method for the isogeometric FSDT analysis of laminated composite plate

机译:基于张量分解的矩阵计算:层合复合板等几何FSDT分析的快速方法

获取原文
获取原文并翻译 | 示例

摘要

This paper presents an efficient computation method for matrices in the isogeometric analysis (IGA) of laminated composite plates, based on the First order Shear Deformation Theory (FSDT). In the method, the stiffness matrix, mass matrix and geometric stiffness matrix for static, vibration and buckling analyses are adapted into tensor-product forms and 2D integrals of the matrices are decomposed into Kronecker product of 1D integrals, which leads to the improvement of computational efficiency. Several experiments that apply the method to the static analysis and design optimization of laminated composite plates are presented in this paper to demonstrate its effectiveness. The first experiment studies the case that the domain parameterization has a diagonal Jacobian matrix (rectangular plate), and the result shows that the computation time of global matrices is drastically reduced while their accuracy is not affected compared with traditional computation methods. The second experiment is about the case of non-diagonal Jacobian matrix. The results of circular plate, annular plate and square plate with complicated cutout show that the matrices calculation is also remarkably sped up when its model is formed in NURBS. Although the tensor-decomposition incurs certain approximation in the second case, the results still show high accuracy. The third and fourth ones study the computation efficiency of design optimization, respectively about the constant-stiffness and variable-stiffness designs when the proposed method is applied to the analysis in each iteration. All the experiments prove the high efficiency of the proposed method.
机译:本文基于一阶剪切变形理论(FSDT),提出了一种有效的层状复合板等几何分析(IGA)矩阵计算方法。该方法将静态,振动和屈曲分析的刚度矩阵,质量矩阵和几何刚度矩阵调整为张量积形式,并将矩阵的2D积分分解为1D积分的Kronecker乘积,从而提高了计算量。效率。本文提出了几种将该方法应用于层压复合板的静力分析和设计优化的实验,以证明其有效性。第一个实验研究了域参数化具有对角雅可比矩阵(矩形板)的情况,结果表明,与传统计算方法相比,全局矩阵的计算时间大大减少,而其精度却没有受到影响。第二个实验是关于非对角雅可比矩阵的情况。圆盘,圆盘和方盘具有复杂切口的结果表明,在NURBS中建立矩阵时,矩阵的计算也明显加快。尽管在第二种情况下张量分解会产生某种近似,但结果仍显示出较高的准确性。第三和第四部分分别研究了在每次迭代中将所提出的方法应用于分析时,关于恒定刚度和可变刚度设计的设计优化的计算效率。所有实验证明了该方法的高效率。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号