首页> 外文期刊>Thin-Walled Structures >Isogeometric analysis of functionally graded plates with a logarithmic higher order shear deformation theory
【24h】

Isogeometric analysis of functionally graded plates with a logarithmic higher order shear deformation theory

机译:对数高阶剪切变形理论的功能梯度板的等几何分析

获取原文
获取原文并翻译 | 示例

摘要

This paper presents a new logarithmic higher order shear deformation theory (LHSDT) based on isogeometric analysis (IGA) to study the static bending, free vibration, and buckling behaviors of functionally graded plates. The temperature change conditions are considered. In the LHSDT fashion, shear stresses disappear at the top and bottom surfaces of the plates and shear correction factor vanishes. The requirement for C-1-continuity in terms of the LHSDT is straightforwardly possessed with the aid of inherent high order continuity of non-uniform rational B-spline (NURBS), which serves as basis functions in our IGA formulation. The superior performance and accuracy of the proposed method is demonstrated through extensive numerical examples. The computed results of static bending, vibration and buckling from the proposed theory are in a very good agreement with reference solutions available in literature obtained by various plate theories and different solving method.
机译:本文提出了一种基于等几何分析(IGA)的新的对数高阶剪切变形理论(LHSDT),以研究功能梯度板的静态弯曲,自由振动和屈曲行为。考虑温度变化条件。以LHSDT方式,剪切应力在板的顶面和底面消失,并且剪切校正系数消失。借助非均匀有理B样条(NURBS)固有的高阶连续性,直接满足了LHSDT中C-1连续性的要求,这是我们IGA公式的基础功能。通过大量的数值例子证明了该方法的优越性能和准确性。提出的理论计算得出的静态弯曲,振动和屈曲结果与各种板理论和不同求解方法获得的参考解决方案非常吻合。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号