首页> 外文期刊>Thin-Walled Structures >Theoretical prediction and crashworthiness optimization of top-hat thin-walled structures under transverse loading
【24h】

Theoretical prediction and crashworthiness optimization of top-hat thin-walled structures under transverse loading

机译:顶载薄壁结构在横向荷载下的理论预测与抗撞性优化

获取原文
获取原文并翻译 | 示例
       

摘要

In this study, a theoretical model is developed to reveal the bending collapse of top-hat thin-walled structures by dividing a top-hat thin-walled structure into a top-hat element and flat-plate element. A theoretical formula is also developed to describe the bending deformation and energy-absorption of the structures. The theoretical model is capable of predicting the bending collapse and energy-absorption of top-hat thin-walled structures with different thickness and material specification. The accuracy and generality of the theoretical prediction model is validated by performing three-point bending tests and finite element simulations. Then, both theoretical prediction formulas and finite element analysis (FEA) based surrogate models are employed to perform the crashworthiness optimization of top-hat thin-walled structures. The results show that (i) the theoretical prediction model is capable of producing results that can be directly used to optimize the thicknesses, cross-sectional geometry, and material specifications for top-hat thin-walled structures, which will increase the efficiency and shorten the cycle time of crashworthiness design optimization for this type of structure; and (ii) steel-aluminum hybrid top-hat thin-walled structure has a larger energy-absorption capacity than high-strength steel without exceeding the initial weight, whereas a lightweight design is more feasible with an aluminum alloy than with high-strength steel without sacrificing the energy absorption of the baseline design.
机译:在这项研究中,通过将顶帽薄壁结构分为顶帽元素和平板元素,建立了一个理论模型以揭示顶帽薄壁结构的弯曲塌陷。还开发了理论公式来描述结构的弯曲变形和能量吸收。该理论模型能够预测不同厚度和材料规格的顶帽薄壁结构的弯曲塌陷和能量吸收。通过执行三点弯曲测试和有限元模拟,可以验证理论预测模型的准确性和通用性。然后,基于理论预测公式和基于有限元分析(FEA)的替代模型,对高顶薄壁结构的耐撞性进行了优化。结果表明:(i)理论预测模型能够产生可直接用于优化礼帽薄壁结构的厚度,横截面几何形状和材料规格的结果,这将提高效率并缩短这种结构的耐撞性设计优化的周期时间; (ii)钢铝混合高顶薄壁结构在不超过初始重量的情况下具有比高强度钢更大的能量吸收能力,而铝合金的轻量化设计比高强度钢更可行而不会牺牲基线设计的能量吸收。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号