首页> 外文期刊>Thin-Walled Structures >Three-dimensional buckling analyses of cracked functionally graded material plates via the MLS-Ritz method
【24h】

Three-dimensional buckling analyses of cracked functionally graded material plates via the MLS-Ritz method

机译:通过MLS-Ritz方法对裂纹的功能梯度材料板进行三维屈曲分析

获取原文
获取原文并翻译 | 示例

摘要

This study presents a novel three-dimensional elasticity-based numerical solution for buckling analysis of a functionally grated material (FGM) plate with a side crack or an internal crack, which is first shown in literature. The distributions of material properties are assumed to follow a power law through plate thickness. The buckling loads of cracked plates are found by the Ritz method with admissible functions constructed by the moving least squares (MLS) technique. The admissible functions are formed by multiplying a set of regular polynomials in the z coordinate with shape functions in x-y coordinates, established by MLS along with a set of basis functions consisting of regular polynomials and proposed crack functions. The proposed crack functions yields the correct singularity order for stresses at a crack front and shows the displacement and slope discontinuities across the crack, which enhances the ability of the Ritz method to handle problems with cracks. In order to validate the proposed solutions, convergence studies for buckling loads of cracked homogeneous plates are performed and a comparison is presented between the present results, previously published ones, and those obtained from commercial finite element software. The proposed approach is further applied to analyze the buckling of All Al2O3 FGM rectangular plates with side cracks and skewed rhombic plates with central internal cracks while considering the effects of material distributions, plate thickness, skew angles, crack lengths, inclination angles and positions, boundary conditions, and loading conditions on the buckling loads of these plates.
机译:这项研究提出了一种新颖的基于三维弹性的数值解决方案,用于对带有侧裂或内部裂纹的功能性磨碎材料(FGM)板的屈曲分析,该方法首次在文献中显示。假设材料特性的分布在整个板厚度上均遵循幂律。裂纹板的屈曲载荷是通过Ritz方法发现的,该函数具有通过移动最小二乘(MLS)技术构造的允许函数。通过将z坐标中的一组正则多项式与x-y坐标中的形状函数相乘(由MLS建立)以及一组由正则多项式和拟议的裂纹函数组成的基函数来形成允许函数。拟议的裂纹函数针对裂纹前沿的应力产生正确的奇异阶,并显示了整个裂纹的位移和坡度不连续性,从而增强了Ritz方法处理裂纹问题的能力。为了验证所提出的解决方案,对裂纹均质板的屈曲载荷进行了收敛研究,并在当前结果,先前发表的结果和从商业有限元软件获得的结果之间进行了比较。在考虑材料分布,板厚,倾斜角,裂纹长度,倾角和位置,边界的影响的基础上,将所提出的方法进一步应用于分析所有带有侧裂的Al2O3 FGM矩形板和具有中心内部裂纹的斜菱形板的屈曲。条件,以及这些板屈曲载荷的载荷条件。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号