...
首页> 外文期刊>Thin Solid Films >Probing strain at the nanoscale with X-ray diffraction in microelectronic materials induced by stressor elements
【24h】

Probing strain at the nanoscale with X-ray diffraction in microelectronic materials induced by stressor elements

机译:应力元素在微电子材料中用X射线衍射在纳米级探测应变

获取原文
获取原文并翻译 | 示例

摘要

The scaling of device dimensions in complementary metal-oxide semiconductor technology has necessitated improvements in transistor mobility achieved through strain engineering. The efficacy of different strain engineering methodologies must be experimentally determined within the actual transistor layout both at a submicron scale and non-destructively. A comparison of several techniques shows that microbeam and nanobeam X-ray diffraction allows us to quantify deformation generated within the Si-based channel regions and crystalline embedded stressor elements. Strain and rotation distributions within silicon-on-insulator (SOI) device layers induced by overlying, compressively stressed, Si_3N_4 features were mapped as a function of stressor linewidth, illustrating the extent of interaction due to its free edges. Strain within SOI device channels and that within adjacent, embedded source/drain e-Si(C) structures was also determined. A comparison of these measurements to the corresponding strain distributions predicted by different mechanical models confirmed the elastic response within the microelectronic features, where the Eshelby inclusion and boundary element methods provide a better match to experimental data than the approach based on edge-forces.
机译:互补金属氧化物半导体技术中器件尺寸的按比例缩放需要通过应变工程实现晶体管迁移率的改善。必须在实际的晶体管布局中以亚微米级和非破坏性地通过实验确定不同应变工程方法的功效。几种技术的比较表明,微束和纳米束X射线衍射使我们能够量化在基于Si的通道区域和晶体嵌入的应力源中产生的变形。将Si_3N_4叠置,压缩应力下的绝缘体上硅(SOI)器件层内的应变和旋转分布映射为应力源线宽的函数,说明了由于其自由边缘而产生的相互作用程度。还确定了SOI设备通道内以及相邻的嵌入式源/漏e-Si(C)结构内的应变。将这些测量结果与通过不同机械模型预测的相应应变分布进行比较,确认了微电子特征内的弹性响应,与基于边缘力的方法相比,埃舍尔比包含法和边界元法可以更好地匹配实验数据。

著录项

  • 来源
    《Thin Solid Films 》 |2013年第1期| 85-90| 共6页
  • 作者单位

    IBM. T.J. Watson Research Center, Yorktown Heights, NY 10598, USA;

    Dept. of Applied Physics & Mathematics, Columbia University, New York, NY 10027, USA;

    Dept. of Applied Physics & Mathematics, Columbia University, New York, NY 10027, USA;

    Advanced Photon Source, Argonne National Laboratory, Argonne, IL 60439, USA;

    Advanced Photon Source, Argonne National Laboratory, Argonne, IL 60439, USA,Center for Nanoscale Materials, Argonne National Laboratory, Argonne, IL 60439, USA;

    Center for Nanoscale Materials, Argonne National Laboratory, Argonne, IL 60439, USA;

  • 收录信息
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

    stress; x-ray diffraction; microelectronics;

    机译:强调;X射线衍射;微电子学;

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号