首页> 外文期刊>Theory and Practice of Logic Programming >Scaling-up reasoning and advanced analytics on BigData
【24h】

Scaling-up reasoning and advanced analytics on BigData

机译:大数据的放大推理和高级分析

获取原文
获取原文并翻译 | 示例

摘要

BigDatalog is an extension of Datalog that achieves performance and scalability on both Apache Spark and multicore systems to the point that its graph analytics outperform those written in GraphX. Looking back, we see how this realizes the ambitious goal pursued by deductive database researchers beginning 40 years ago: this is the goal of combining the rigor and power of logic in expressing queries and reasoning with the performance and scalability by which relational databases managed BigData. This goal led to Datalog which is based on Horn Clauses like Prolog but employs implementation techniques, such as semi-naive fixpoint and magic sets, that extend the bottom-up computation model of relational systems, and thus obtain the performance and scalability that relational systems had achieved, as far back as the 80s, using data-parallelization on shared-nothing architectures. But this goal proved difficult to achieve because of major issues at (i) the language level and (ii) at the system level. The paper describes how (i) was addressed by simple rules under which the fixpoint semantics extends to programs using count, sum and extrema in recursion, and (ii) was tamed by parallel compilation techniques that achieve scalability on multicore systems and Apache Spark. This paper is under consideration for acceptance in Theory and Practice of Logic Programming.
机译:BigDatalog是Datalog的扩展,可在Apache Spark和多核系统上实现性能和可伸缩性,以至于其图形分析性能优于GraphX中编写的图形分析。回顾过去,我们看到这是如何实现40年前开始的演绎数据库研究人员所追求的宏伟目标的:这是将逻辑在表达查询和推理时的严格性和力量与关系数据库管理BigData的性能和可伸缩性相结合的目标。这个目标导致了Datalog,它基于Prolog之类的Horn子句,但采用了诸如半天不动的定点和魔术集之类的实现技术,这些技术扩展了关系系统的自下而上的计算模型,从而获得了关系系统的性能和可伸缩性。早在80年代,在无共享架构上使用数据并行化就已经实现了。但是,由于在(i)语言级别和(ii)在系统级别存在重大问题,事实证明该目标难以实现。本文描述了(i)如何通过简单的规则解决问题,在该规则下,固定点语义可以递归地使用计数,求和和极值扩展到程序,并且(ii)通过在多核系统和Apache Spark上实现可伸缩性的并行编译技术加以驯服。本文正在考虑接受逻辑编程的理论和实践。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号