首页> 外文期刊>Theory and Practice of Logic Programming >First-order Answer Set Programming as Constructive Proof Search
【24h】

First-order Answer Set Programming as Constructive Proof Search

机译:一阶答案集编程作为构造性证明搜索

获取原文
获取原文并翻译 | 示例

摘要

We propose an interpretation of the first-order answer set programming (FOASP) in terms of intuitionistic proof theory. It is obtained by two polynomial translations between FOASP and the bounded-arity fragment of the Sigma(1) level of the Mints hierarchy in first-order intuitionistic logic. It follows that Sigma(1) formulas using predicates of fixed arity (in particular unary) is of the same strength as FOASP. Our construction reveals a close similarity between constructive provability and stable entailment, or equivalently, between the construction of an answer set and an intuitionistic refutation. This paper is under consideration for publication in Theory and Practice of Logic Programming.
机译:我们建议用直觉证明理论来解释一阶答案集编程(FOASP)。它是通过一阶直觉逻辑中的FOASP和Mints层次的Sigma(1)级别的有界片段之间的两次多项式转换获得的。因此,使用固定ar(特别是一元)谓词的Sigma(1)公式与FOASP具有相同的强度。我们的构造揭示了构造可证明性和稳定蕴涵之间的相似性,或者等效地,构造了答案集和直觉上的反驳之间的相似性。本文正在考虑发表在《逻辑编程的理论与实践》中。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号