首页> 外文期刊>Theory of computing systems >Computing Majority by Constant Depth Majority Circuits with Low Fan-in Gates
【24h】

Computing Majority by Constant Depth Majority Circuits with Low Fan-in Gates

机译:通过低扇入门的恒定深度多数电路计算多数

获取原文
获取原文并翻译 | 示例

摘要

We study the following computational problem: for which values of k, the majority of n bits MAJ(n) can be computed with a depth two formula whose each gate computes a majority function of at most k bits? The corresponding computational model is denoted by MAJk degrees MAJk. We observe that the minimum value of k for which there exists a MAJk degrees MAJk circuit that has high correlation with the majority of n bits is equal to Theta(n(1/2)). We then show that for a randomized MAJk degrees MAJk circuit computing the majority of n input bits with high probability for every input, the minimum value of k is equal to n(2/3 + o(1)). We show a worst case lower bound: if a MAJk degrees MAJk circuit computes the majority of n bits correctly on all inputs, then k = n(13/19 + o(1)).
机译:我们研究以下计算问题:对于哪个k值,可以使用深度为2的公式来计算n位的大多数MAJ(n),每个门最多可以计算k位的多数函数?相应的计算模型由MAJk度MAJk表示。我们观察到存在与大多数n位具有高度相关性的MAJk度MAJk电路的k的最小值等于Theta(n(1/2))。然后,我们表明,对于一个随机MAJk度MAJk电路,每个输入都有很高的概率计算n个输入位的大多数,k的最小值等于n(2/3 + o(1))。我们展示了最坏情况的下限:如果MAJk度MAJk电路正确计算了所有输入上的大多数n位,则k> = n(13/19 + o(1))。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号