首页> 外文期刊>Theory of computing systems >Maximal Pairs of Computably Enumerable Sets in the Computably Lipschitz Degrees
【24h】

Maximal Pairs of Computably Enumerable Sets in the Computably Lipschitz Degrees

机译:可计算Lipschitz度中的最大可计算集对

获取原文
获取原文并翻译 | 示例

摘要

A set A is computably Lipschitz or cl-reducible, for short, to a set B if A is Turing reducible to B by an oracle Turing machine with use function ? such that ? is bounded by the identity function up to an additive constant, i.e., φ(n) ≤n + O(1). In this paper we study maximal pairs of computably enumerable (c.e.) cl-degrees or maximal pairs, for short, i.e., pairs of c.e. cl-degrees such that there is no c.e. cl-degree that is above both cl-degrees in this pair. Our main results are as follows. (1) A c.e. Turing degree contains a c.e. cl-degree that is half of a maximal pair if and only if this Turing degree contains a maximal pair if and only if this Turing degree is array noncomputable. (2) The cl-degrees of all weak truth-table complete sets are halves of maximal pairs while there is a Turing complete set A such that the cl-degree of A is not half of any maximal pair. In fact, any high c.e. Turing degree contains a c.e. cl-degree that is not half of a maximal pair. (3) Above any c.e. cl-degree there is a maximal pair. (4) There is a maximal pair which at the same time is a minimal pair. (5) There is a pair of c.e. cl-degrees that is not maximal and does not possess a least upper bound. Moreover, we make some observations on the structure of the c.e. cl-degrees in general. For instance, we give a very simple proof of the fact that there are no maximal c.e. cl-degrees.
机译:如果A可通过具有使用功能的预言图灵机将图灵化为B,则可以将集合A简化为Lipschitz或cl可归约到集合B。这样吗?由恒等式函数限制到一个加法常数,即φ(n)≤n+ O(1)。在本文中,我们研究可计算可数(c.c)级的最大对或简称为c.e的最大对。 cl-度,因此没有c.e. cl-degree高于这对中的两个cl-degree。我们的主要结果如下。 (1)一份证明书图灵度包含c.e.当且仅当该图灵度包含最大对时,cl-degree才是最大对的一半,并且当且仅当此图灵度是数组不可计算的时,cl-degree才是最大对。 (2)所有弱真值表完整集的cl度都是最大对的一半,而有一个图灵完整集A使得A的cl度不是任何最大对的一半。实际上,图灵度包含c.e. cl-degree不是最大对的一半。 (3)高于任何c.e. cl-度有一个最大对。 (4)有一个最大对,同时又是一个最小对。 (5)有一对c.e.不最大且不具有最小上限的cl度。此外,我们对c.e.的结构进行了一些观察。一般为cl度。例如,我们给出一个非常简单的证明,即没有最大c.e。 cl-度。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号