首页> 外文期刊>Theory of computing systems >Network Formation for Asymmetric Players and Bilateral Contracting
【24h】

Network Formation for Asymmetric Players and Bilateral Contracting

机译:不对称参与者的网络形成和双边签约

获取原文
获取原文并翻译 | 示例

摘要

We study a network formation game where players wish to send traffic to other players. Players can be seen as nodes of an undirected graph whose edges are defined by contracts between the corresponding players. Each player can contract bilaterally with others to form bidirectional links or break unilaterally contracts to eliminate the corresponding links. Our model is an extension of the traffic routing model considered in Arcaute, E., Johari, R., Mannor, S., (IEEE Trans. Automat. Contr. 54(8), 1765-1778 2009) in which we do not require the traffic to be uniform and all-to-all. Player i specifies the amount of traffic t (i j) aeyen 0 that wants to send to player j. Our notion of stability is the network pairwise Nash stability, when no node wishes to deviate unilaterally and no pair of nodes can obtain benefit from deviating bilaterally. We show a characterization of the topologies that are pairwise Nash stable for a given traffic matrix. We prove that the best response problem is NP-hard and devise a myopic dynamics so that the deviation of the active node can be computed in polynomial time. We show the convergence of the dynamics to pairwise Nash configurations, when the contracting functions are anti-symmetric and affine, and that the expected convergence time is polynomial in the number of nodes when the node activation process is uniform.
机译:我们研究了一个网络形成游戏,玩家希望将流量发送给其他玩家。玩家可以看作是无向图的节点,其边缘由相应玩家之间的契约定义。每个玩家都可以与其他玩家双向收缩以形成双向链接,也可以单方面打破合约以消除相应的链接。我们的模型是Arcaute,E.,Johari,R.,Mannor,S.(IEEE Trans.Automat.Contr.54(8),1765-1778 2009)中考虑的流量路由模型的扩展,但我们没有要求流量是统一且全部覆盖的。玩家i指定要发送给玩家j的流量t(i j)aeyen 0。我们的稳定性概念是网络成对的Nash稳定性,当没有节点希望单方面偏离并且任何节点对都无法从双边偏离中获得利益时。我们显示了对于给定流量矩阵成对Nash稳定的拓扑的特征。我们证明了最佳响应问题是NP难的,并设计了近视动力学,从而可以在多项式时间内计算活动节点的偏差。我们展示了当收缩函数是反对称且仿射的时,动力学收敛于成对的Nash配置,并且当节点激活过程均匀时,预期的收敛时间是节点数的多项式。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号