首页> 外文期刊>Theory of computing systems >Scheduling Parallel Jobs Online with Convex and Concave Parallelizability
【24h】

Scheduling Parallel Jobs Online with Convex and Concave Parallelizability

机译:使用凸和凹可并行性在线安排并行作业

获取原文
获取原文并翻译 | 示例

摘要

Online scheduling of parallelizable jobs has received a significant amount of attention recently. Scalable algorithms are known-that is, algorithms that are (1 + epsilon)-speed O(1)-competitive for any fixed epsilon 0. Previous research has focused on the case where each job's parallelizability can be expressed as a concave speedup curve. However, there are cases where a job's speedup curve can be convex. Considering convex speedup curves has received attention in the offline setting, but, to date, there are no positive results in the online model. In this work, we consider scheduling jobs with convex or concave speedup curves for the first time in the online setting. We give a new algorithm that is (1 + epsilon)-speed O(1)-competitive. There are strong lower bounds on the competitive ratio if the algorithm is not given resource augmentation over the adversary, and thus this is essentially the best positive result one can show for this setting.
机译:最近,可并行化作业的在线调度受到了广泛关注。可扩展算法是已知的,也就是说,对于任何大于0的固定epsilon,其算法都具有(1 + epsilon)速度O(1)的竞争能力。先前的研究集中在每个作业的可并行性可以表示为凹加速曲线的情况下。但是,在某些情况下,作业的加速曲线可能会凸出。考虑凸加速曲线在离线环境中受到关注,但迄今为止,在线模型中没有任何积极的结果。在这项工作中,我们考虑在在线设置中首次安排具有凸或凹加速曲线的作业。我们给出了一种新算法,该算法具有(1 + epsilon)速度O(1)竞争。如果没有给算法增加对手的资源,则竞争比率会有很强的下限,因此,从本质上来说,这是一个可以显示出最佳效果的积极结果。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号