首页> 外文期刊>Theoretical Issues in Ergonomics Science >Advances in machine learning applications for scenario intelligence: deep learning
【24h】

Advances in machine learning applications for scenario intelligence: deep learning

机译:用于场景智能的机器学习应用程序的进展:深度学习

获取原文
获取原文并翻译 | 示例

摘要

In this paper, we discuss the inextricable link between automatingrntraining environment adaptation and deep understanding of therncontext surrounding specific decisions and actions executed in thernperformance environment. To enable deep contextual understanding,rnpsychological measurement strategies are needed to more accuratelyrnand rapidly model the psychologically meaningful details of therntrainee’s interactions with events, objects, and people in the trainingrnenvironment. As these interactions often entail complex, nonlinearrncue-action relationships, the underlying models must effectivelyrncapture the nuance, complexity, and largely intuitive nature ofrnhuman decision-making. This paper discusses the promise of anrnemerging field of machine learning u0001 deep neural networks u0001 forrnsupporting this requirement.
机译:在本文中,我们讨论了自动化培训环境适应与对性能环境中执行的特定决策和动作的上下文的深刻理解之间不可分割的联系。为了获得深入的上下文理解,需要一种心理测量策略来更准确地并且迅速地模拟受训者与受训环境中的事件,对象和人的互动的心理意义细节。由于这些交互通常需要复杂的,非线性的线索-动作关系,因此基础模型必须有效地捕捉人为决策的细微差别,复杂性和很大程度上直观的本质。本文讨论了支持这种要求的机器学习新兴领域的前景。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号