首页> 外文期刊>Theoretical Computer Science >ON THE VC-DIMENSION OF DEPTH FOUR THRESHOLD CIRCUITS AND THE COMPLEXITY OF BOOLEAN-VALUED FUNCTIONS
【24h】

ON THE VC-DIMENSION OF DEPTH FOUR THRESHOLD CIRCUITS AND THE COMPLEXITY OF BOOLEAN-VALUED FUNCTIONS

机译:深度四阈值电路的VC维和布尔值函数的复杂性

获取原文
获取原文并翻译 | 示例

摘要

We consider the problem of determining the VC-dimension d(3)(h) of depth four n-input 1-output threshold circuits with h elements. Best known asymptotic lower bounds and upper bounds are proved, that is, when h --> infinity, d(3)(h) is upper bounded by ((h(2)/3)+nh)(logh)(1+o(1)) and lower bounded by (1/2)((h(2)/4) +nh)(logh)(1-o(1)). We also consider the problem of determining the complexity C-3(N)(c(3))(N)) of Boolean functions defined on N-pointsets of vertices of n-dimensional hypercube (Boolean-valued functions defined on N-pointsets in R(n), respectively), measured by the number of threshold elements, with which we can construct a depth four circuit to realize the functions. We also show the best known upper and lower bounds, that is, when N-->infinity, C-3(N) upper bounded by root 32(N/logN)(1+o(1)) and lower bounded by root 6(n/logN)(1-o(1)) and c(3)(N) is upper bounded by root 16(N/logN)(1+o(1))+4n(2)-2n and lower bounded by root 6(N/logN)(1-o(1))+(9/4)n(2)-(3/2)H. [References: 12]
机译:我们考虑确定具有h个元素的四个n输入1输出阈值深度电路的VC维d(3)(h)的问题。证明了最著名的渐近下界和上限,即当h->无穷大时,d(3)(h)由((h(2)/ 3)+ nh)(logh)(1+ o(1))并以(1/2)((h(2)/ 4)+ nh)(logh)(1-o(1))为下界。我们还考虑确定在n维超立方体的顶点的N个点集上定义的布尔函数的复杂度C-3(N)(c(3))(N)的问题(在N个点集上定义的布尔值函数)分别通过阈值元素的数量来测量R(n)中的值,利用该阈值元素我们可以构建一个深度四电路来实现功能。我们还显示了最著名的上限和下限,即当N-> infinity时,C-3(N)的上界为根32(N / logN)(1 + o(1)),下界为根6(n / logN)(1-o(1))和c(3)(N)由根16(N / logN)(1 + o(1))+ 4n(2)-2n限制由根6(N / logN)(1-o(1))+(9/4)n(2)-(3/2)H界定。 [参考:12]

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号