We conducted a large eddy simulation (LES) of a locally applied electromagnetic control of turbulent thermal convection of an electrically conductive fluid (electrolyte solution) inside of a slender enclosure. Generic configurations, consisting of two or three magnets of opposite polarities located below the lower wall, and two oppositely charged electrodes along the side walls, are considered. The neutral situation (pure thermal convection) is selected to be in turbulent regime at Ra = 107, Pr = 7. A magnetically extended Smagorinsky type model for the subgrid turbulent stresses and a simple-gradient diffusion model for the subgrid turbulent heat fluxes are used. Different intensities of applied DC current through electrodes are imposed. The effects of the resulting Lorentz force on flow, turbulence reorganisation and wall-heat transfer are analysed. It is demonstrated that significant flow and turbulence structure reorganisation takes place in the proximity of the lower horizontal wall and in the central parts of the enclosure—even for weak DC current of I = 1 A. Significant turbulence increase, generated by the elevated electromagnetic mixing, produced significant enhancements of the wall-heat transfer—up to 70% for the 2-magnet configuration.
展开▼