首页> 外文期刊>Theoretical and applied climatology >Performance evaluation of numerical and machine learning methods in estimating reference evapotranspiration in a Brazilian agricultural frontier
【24h】

Performance evaluation of numerical and machine learning methods in estimating reference evapotranspiration in a Brazilian agricultural frontier

机译:巴西农业前沿估算参考蒸散的数值和机器学习方法的性能评估

获取原文
获取原文并翻译 | 示例

摘要

The reference evapotranspiration (ET0) estimates is important for water resources and irrigation management. The Penman-Monteith equation is known for its accuracy but requires a high number of climatic parameters that are not always available. Thus, this study aimed to evaluate the performance of machine learning techniques (cubist regression, artificial neural network with Bayesian regularization, support vector machine with linear kernel function) and stepwise multiple linear regression method to estimate daily ET(0)with limited weather data in a Brazilian agricultural frontier (MATOPIBA). Climatic data from 2000 to 2016 obtained from 23 weather stations were used. Five data scenarios were evaluated: (i) all variables, (ii) radiation and temperature, (iii) temperature and relative humidity, (iv) wind speed and temperature, and (v) temperature. The results showed that the machine learning methods are robust in estimating ET0, even in the absence of some variables. Among the methods evaluated using only temperature data, the cubist regression showed better performance. When estimating water demand for soybean and maize crops using only temperature, the cubist regression and calibrated Hargreaves-Samani equation showed the smallest errors.
机译:参考蒸散(ET0)估计对于水资源和灌溉管理是重要的。 Penman-Monteith方程以其准确性而闻名,但需要大量并不总是可用的气候参数。因此,本研究旨在评估机器学习技术的性能(立方体回归,人工神经网络与贝叶斯正则化,支持向量机带有线性内核功能)和逐步多元线性回归方法来估计每日ET(0),其中天气数据有限巴西农业前沿(Matopiba)。使用了从23个气象站获得的2000到2016年的气候数据。评估五个数据场景:(i)所有变量,(ii)辐射和温度,(iii)温度和相对湿度,(iv)风速和温度,和(v)温度。结果表明,即使在没有一些变量的情况下,机器学习方法也在估计ET0方面是稳健的。在使用仅使用温度数据评估的方法中,立体师回归显示出更好的性能。使用仅使用温度估计对大豆和玉米作物的水需求,立体师回归和校准Hargreaves-Samani方程显示出最小的错误。

著录项

  • 来源
    《Theoretical and applied climatology》 |2020年第4期|1481-1492|共12页
  • 作者单位

    Fed Univ Vicosa UFV Dept Agr Engn Ave Peter Henry Rolfs S-N BR-36570900 Vicosa MG Brazil;

    Fed Univ Vicosa UFV Dept Agr Engn Ave Peter Henry Rolfs S-N BR-36570900 Vicosa MG Brazil;

    Fed Univ Vicosa UFV Dept Agr Engn Ave Peter Henry Rolfs S-N BR-36570900 Vicosa MG Brazil|Embrapa Cerrados Brazilian Agr Res Corp BR-020 Km 18 BR-73310970 Planaltina DF Brazil;

    Fed Univ Vicosa UFV Dept Agr Engn Ave Peter Henry Rolfs S-N BR-36570900 Vicosa MG Brazil;

  • 收录信息
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号